171 lines
5.6 KiB
Python
171 lines
5.6 KiB
Python
import csv
|
|
from typing import Any
|
|
import psycopg2
|
|
import boto3
|
|
import os
|
|
from tqdm import tqdm
|
|
from datetime import datetime, timedelta
|
|
from pytz import timezone
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv("../.env_prod")
|
|
# load_dotenv("../.env")
|
|
|
|
OUTPUT_NAME = "0131-0206"
|
|
START_DATE = datetime(2024, 1, 31, tzinfo=timezone('Asia/Singapore'))
|
|
END_DATE = datetime(2024, 2, 6, tzinfo=timezone('Asia/Singapore'))
|
|
BAD_THRESHOLD = 0.75
|
|
|
|
REVIEW_ACC_COL = 19
|
|
FEEDBACK_ACC_COL = 18
|
|
REQUEST_ID_COL = 6
|
|
|
|
# Database connection details
|
|
db_host = os.environ.get('DB_HOST', "")
|
|
# db_host = "42.96.42.13"
|
|
db_name = os.environ.get('DB_SCHEMA', "")
|
|
db_user = os.environ.get('DB_USER', "")
|
|
db_password = os.environ.get('DB_PASSWORD', "")
|
|
|
|
# S3 bucket details
|
|
s3_bucket_name = os.environ.get('S3_BUCKET_NAME', "")
|
|
s3_folder_prefix = 'sbt_invoice'
|
|
|
|
# S3 access credentials
|
|
access_key = os.environ.get('S3_ACCESS_KEY', "")
|
|
secret_key = os.environ.get('S3_SECRET_KEY', "")
|
|
|
|
class RequestAtt:
|
|
def __init__(self) -> None:
|
|
self.feedback_accuracy = []
|
|
self.reiviewed_accuracy = []
|
|
self.acc = 0
|
|
self.request_id = None
|
|
self.is_bad = False
|
|
self.data = []
|
|
|
|
def add_file(self, file):
|
|
self.data.append(file)
|
|
if file[REVIEW_ACC_COL]:
|
|
for key in file[REVIEW_ACC_COL].keys():
|
|
self.feedback_accuracy += file[REVIEW_ACC_COL][key]
|
|
if file[FEEDBACK_ACC_COL]:
|
|
for key in file[FEEDBACK_ACC_COL].keys():
|
|
self.feedback_accuracy += file[FEEDBACK_ACC_COL][key]
|
|
|
|
def is_bad_image(self):
|
|
fb = min(self.feedback_accuracy)/len(self.feedback_accuracy) if len(self.feedback_accuracy) else None
|
|
rv = min(self.reiviewed_accuracy)/len(self.reiviewed_accuracy) if len(self.reiviewed_accuracy) else None
|
|
if not fb and not rv:
|
|
self.is_bad = False
|
|
return False
|
|
elif fb and rv is None:
|
|
self.is_bad = fb < BAD_THRESHOLD
|
|
self.acc = fb
|
|
return fb < BAD_THRESHOLD
|
|
elif fb and rv:
|
|
self.is_bad = rv < BAD_THRESHOLD
|
|
self.acc = rv
|
|
return rv < BAD_THRESHOLD
|
|
return False
|
|
|
|
def get_request(cursor, request_in_id):
|
|
query = "SELECT * FROM fwd_api_subscriptionrequest WHERE id = %s"
|
|
cursor.execute(query, (request_in_id,))
|
|
data = cursor.fetchone()
|
|
return data if data else None
|
|
|
|
# Request IDs for filtering
|
|
def main():
|
|
# Connect to the PostgreSQL database
|
|
conn = psycopg2.connect(
|
|
host=db_host,
|
|
database=db_name,
|
|
user=db_user,
|
|
password=db_password
|
|
)
|
|
|
|
# Create a cursor
|
|
cursor = conn.cursor()
|
|
|
|
|
|
# Execute the SELECT query with the filter
|
|
query = "SELECT * FROM fwd_api_subscriptionrequestfile WHERE created_at >= %s AND created_at <= %s AND feedback_accuracy IS NOT NULL"
|
|
cursor.execute(query, (START_DATE, END_DATE))
|
|
|
|
# Fetch the filtered data
|
|
data = cursor.fetchall()
|
|
|
|
# Define the CSV file path
|
|
csv_file_path = f'{OUTPUT_NAME}.csv'
|
|
data_dict = {}
|
|
# Filter out requests request that has quality < 75%
|
|
for i, _d in enumerate(data):
|
|
if not data_dict.get(_d[REQUEST_ID_COL], None):
|
|
data_dict[_d[REQUEST_ID_COL]] = RequestAtt()
|
|
data_dict[_d[REQUEST_ID_COL]].request_id = _d[REQUEST_ID_COL]
|
|
data_dict[_d[REQUEST_ID_COL]].add_file(_d)
|
|
|
|
bad_images = []
|
|
for k in data_dict.keys():
|
|
if data_dict[k].is_bad_image():
|
|
bad_images.append(data_dict[k])
|
|
|
|
request_ids = []
|
|
# Write the data to the CSV file
|
|
for bad_image in bad_images:
|
|
request = get_request(cursor, bad_image.request_id)
|
|
if request:
|
|
request_ids.append(request[3])
|
|
|
|
# ###################### Get bad requests ######################
|
|
placeholders = ','.join(['%s'] * len(request_ids))
|
|
|
|
# Execute the SELECT query with the filter
|
|
query = f"SELECT * FROM fwd_api_subscriptionrequest WHERE request_id IN ({placeholders})"
|
|
cursor.execute(query, request_ids)
|
|
|
|
# Fetch the filtered data
|
|
data = cursor.fetchall()
|
|
|
|
# Define the CSV file path
|
|
csv_file_path = f'{OUTPUT_NAME}.csv'
|
|
|
|
# Write the data to the CSV file
|
|
with open(csv_file_path, 'w', newline='') as csv_file:
|
|
writer = csv.writer(csv_file)
|
|
writer.writerow([desc[0] for desc in cursor.description]) # Write column headers
|
|
writer.writerows(data) # Write the filtered data rows
|
|
|
|
# Close the cursor and database connection
|
|
cursor.close()
|
|
conn.close()
|
|
|
|
# Download folders from S3
|
|
s3_client = boto3.client(
|
|
's3',
|
|
aws_access_key_id=access_key,
|
|
aws_secret_access_key=secret_key
|
|
)
|
|
|
|
for request_id in tqdm(request_ids):
|
|
folder_key = f"{s3_folder_prefix}/{request_id}/" # Assuming folder structure like: s3_bucket_name/s3_folder_prefix/request_id/
|
|
local_folder_path = f"{OUTPUT_NAME}/{request_id}/" # Path to the local folder to save the downloaded files
|
|
os.makedirs(OUTPUT_NAME, exist_ok=True)
|
|
os.makedirs(local_folder_path, exist_ok=True)
|
|
|
|
|
|
# List objects in the S3 folder
|
|
response = s3_client.list_objects_v2(Bucket=s3_bucket_name, Prefix=folder_key)
|
|
objects = response.get('Contents', [])
|
|
|
|
for s3_object in objects:
|
|
object_key = s3_object['Key']
|
|
local_file_path = local_folder_path + object_key.split('/')[-1] # Extracting the file name from the object key
|
|
|
|
# Download the S3 object to the local file
|
|
s3_client.download_file(s3_bucket_name, object_key, local_file_path)
|
|
|
|
if __name__ == "__main__":
|
|
main() |