import csv import psycopg2 import boto3 import os from tqdm import tqdm from datetime import datetime, timedelta from pytz import timezone from dotenv import load_dotenv load_dotenv("../.env_prod") OUTPUT_NAME = "all_0226_0304" START_DATE = datetime(2024, 2, 26, tzinfo=timezone('Asia/Ho_Chi_Minh')) END_DATE = datetime(2024, 3, 4, tzinfo=timezone('Asia/Ho_Chi_Minh')) # Database connection details db_host = os.environ.get('DB_HOST', "") db_name = os.environ.get('DB_SCHEMA', "") db_user = os.environ.get('DB_USER', "") db_password = os.environ.get('DB_PASSWORD', "") # S3 bucket details s3_bucket_name = os.environ.get('S3_BUCKET_NAME', "") s3_folder_prefix = 'sbt_invoice' # S3 access credentials access_key = os.environ.get('S3_ACCESS_KEY', "") secret_key = os.environ.get('S3_SECRET_KEY', "") # Request IDs for filtering # Connect to the PostgreSQL database conn = psycopg2.connect( host=db_host, database=db_name, user=db_user, password=db_password ) # Create a cursor cursor = conn.cursor() # Execute the SELECT query with the filter query = "SELECT * FROM fwd_api_subscriptionrequest WHERE created_at >= %s AND created_at <= %s" cursor.execute(query, (START_DATE, END_DATE)) # Fetch the filtered data data = cursor.fetchall() # Define the CSV file path csv_file_path = f'{OUTPUT_NAME}.csv' # Write the data to the CSV file with open(csv_file_path, 'w', newline='') as csv_file: writer = csv.writer(csv_file) writer.writerow([desc[0] for desc in cursor.description]) # Write column headers writer.writerows(data) # Write the filtered data rows # Close the cursor and database connection cursor.close() conn.close() # # Download folders from S3 s3_client = boto3.client( 's3', aws_access_key_id=access_key, aws_secret_access_key=secret_key ) request_ids = [] for rq in data: rq_id = rq[3] request_ids.append(rq_id) for request_id in tqdm(request_ids): folder_key = f"{s3_folder_prefix}/{request_id}/" # Assuming folder structure like: s3_bucket_name/s3_folder_prefix/request_id/ local_folder_path = f"{OUTPUT_NAME}/{request_id}/" # Path to the local folder to save the downloaded files os.makedirs(OUTPUT_NAME, exist_ok=True) os.makedirs(local_folder_path, exist_ok=True) # List objects in the S3 folder response = s3_client.list_objects_v2(Bucket=s3_bucket_name, Prefix=folder_key) objects = response.get('Contents', []) for s3_object in objects: object_key = s3_object['Key'] local_file_path = local_folder_path + object_key.split('/')[-1] # Extracting the file name from the object key # Download the S3 object to the local file s3_client.download_file(s3_bucket_name, object_key, local_file_path)