Apply changes

This commit is contained in:
dx-tan 2024-02-05 12:56:51 +07:00
parent 793205bb41
commit 3b4ded2f6e
21 changed files with 693 additions and 355 deletions

View File

@ -220,6 +220,9 @@ SIZE_TO_COMPRESS = 2 * 1024 * 1024
MAX_NUMBER_OF_TEMPLATE = 3
MAX_PAGES_OF_PDF_FILE = 50
OVERVIEW_REFRESH_INTERVAL = 2
OVERVIEW_REPORT_KEY = "overview"
CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.dummy.DummyCache',

View File

@ -256,6 +256,9 @@ class AccuracyViewSet(viewsets.ViewSet):
"subsidiary": subsidiary,
"is_daily_report": is_daily_report,
}
# if is_daily_report:
# if (end_date-start_date) > timezone.timedelta(days=1):
# raise InvalidException(excArgs="Date range")
report_id = "report" + "_" + timezone.datetime.now().strftime("%Y%m%d%H%M%S%z") + "_" + uuid.uuid4().hex
new_report: Report = Report(
@ -268,8 +271,6 @@ class AccuracyViewSet(viewsets.ViewSet):
end_at=end_date,
status="Processing",
)
if is_daily_report:
new_report.created_at = end_date
new_report.save()
# Background job to calculate accuracy
shadow_report(report_id, query_set)
@ -380,7 +381,7 @@ class AccuracyViewSet(viewsets.ViewSet):
page_size = int(request.GET.get('page_size', 10))
if not start_date_str or not end_date_str:
reports = Report.objects.all()
reports = Report.objects.all().order_by('created_at').reverse()
else:
try:
start_date = timezone.datetime.strptime(start_date_str, '%Y-%m-%dT%H:%M:%S%z')
@ -390,11 +391,10 @@ class AccuracyViewSet(viewsets.ViewSet):
base_query = Q(created_at__range=(start_date, end_date))
if daily_report_only:
base_query &= Q(is_daily_report=True)
reports = Report.objects.filter(base_query).order_by('created_at')
reports = Report.objects.filter(base_query).order_by('created_at').reverse()
paginator = Paginator(reports, page_size)
page = paginator.get_page(page_number).order_by('created_at')
page = paginator.get_page(page_number)
data = []
for report in page:
@ -480,12 +480,15 @@ class AccuracyViewSet(viewsets.ViewSet):
end_date = timezone.datetime.strptime(end_date_str, '%Y-%m-%dT%H:%M:%S%z')
except ValueError:
raise InvalidException(excArgs="Date format")
base_query &= Q(created_at__range=(start_date, end_date))
else:
end_date = timezone.datetime.now()
start_date = end_date - timezone.timedelta(days=30)
base_query &= Q(created_at__range=(start_date, end_date))
if subsidiary:
base_query &= Q(subsidiary=subsidiary)
base_query &= Q(is_daily_report=True)
reports = Report.objects.filter(base_query).order_by('created_at').reverse()
reports = Report.objects.filter(base_query).order_by('start_at').reverse()
paginator = Paginator(reports, page_size)
page = paginator.get_page(page_number)
@ -500,8 +503,6 @@ class AccuracyViewSet(viewsets.ViewSet):
data += _data
this_month_report = MonthReportAccumulate()
this_month_report.add(report)
else:
continue
_, _data, total = this_month_report()
data += [total]
data += _data

View File

@ -36,6 +36,8 @@ class CeleryConnector:
'remove_local_file': {'queue': "remove_local_file"},
'csv_feedback': {'queue': "csv_feedback"},
'make_a_report': {'queue': "report"},
'make_a_report_2': {'queue': "report_2"},
}
app = Celery(
@ -45,6 +47,10 @@ class CeleryConnector:
)
def make_a_report(self, args):
return self.send_task('make_a_report', args)
def make_a_report_2(self, args):
return self.send_task('make_a_report_2', args)
def csv_feedback(self, args):
return self.send_task('csv_feedback', args)
def do_pdf(self, args):

View File

@ -13,6 +13,7 @@ from fwd_api.models import SubscriptionRequestFile, FeedbackRequest, Report
from ..utils import file as FileUtils
from ..utils import process as ProcessUtil
from ..utils import s3 as S3Util
from ..utils.accuracy import validate_feedback_file
from fwd_api.constant.common import ProcessType
import csv
import json
@ -117,6 +118,9 @@ def process_csv_feedback(csv_file_path, feedback_id):
_feedback_result = copy.deepcopy(sub_rq.feedback_result)
_reviewed_result = copy.deepcopy(sub_rq.reviewed_result)
image.processing_time = time_cost.get(image.doc_type, [0 for _ in range(image.index_in_request)])[image.index_in_request]
if not validate_feedback_file(_feedback_result, _predict_result):
status[request_id] = "Missalign imei number between feedback and predict"
continue
if image.doc_type == "invoice":
_predict_result["imei_number"] = []
if _feedback_result:

View File

@ -3,8 +3,9 @@ import traceback
from fwd_api.models import SubscriptionRequest, Report, ReportFile
from fwd_api.celery_worker.worker import app
from ..utils import s3 as S3Util
from ..utils.accuracy import update_temp_accuracy, IterAvg, calculate_and_save_subcription_file, count_transactions, extract_report_detail_list
from ..utils.accuracy import update_temp_accuracy, IterAvg, calculate_and_save_subcription_file, count_transactions, extract_report_detail_list, calculate_a_request, ReportAccumulateByRequest
from ..utils.file import dict2xlsx, save_workbook_file, save_report_to_S3
from ..utils import time_stuff
from django.utils import timezone
from django.db.models import Q
@ -29,6 +30,7 @@ def mean_list(l):
@app.task(name='make_a_report')
def make_a_report(report_id, query_set):
# TODO: to be deprecated
try:
start_date = timezone.datetime.strptime(query_set["start_date_str"], '%Y-%m-%dT%H:%M:%S%z')
end_date = timezone.datetime.strptime(query_set["end_date_str"], '%Y-%m-%dT%H:%M:%S%z')
@ -152,3 +154,134 @@ def make_a_report(report_id, query_set):
print("[ERROR]: an error occured while processing report: ", report_id)
traceback.print_exc()
return 400
@app.task(name='make_a_report_2')
def make_a_report_2(report_id, query_set):
try:
start_date = timezone.datetime.strptime(query_set["start_date_str"], '%Y-%m-%dT%H:%M:%S%z')
end_date = timezone.datetime.strptime(query_set["end_date_str"], '%Y-%m-%dT%H:%M:%S%z')
base_query = Q(created_at__range=(start_date, end_date))
if query_set["request_id"]:
base_query &= Q(request_id=query_set["request_id"])
if query_set["redemption_id"]:
base_query &= Q(redemption_id=query_set["redemption_id"])
base_query &= Q(is_test_request=False)
if isinstance(query_set["include_test"], str):
query_set["include_test"] = True if query_set["include_test"].lower() in ["true", "yes", "1"] else False
if query_set["include_test"]:
# base_query = ~base_query
base_query.children = base_query.children[:-1]
elif isinstance(query_set["include_test"], bool):
if query_set["include_test"]:
base_query = ~base_query
if isinstance(query_set["subsidiary"], str):
if query_set["subsidiary"] and query_set["subsidiary"].lower().replace(" ", "")!="all":
base_query &= Q(redemption_id__startswith=query_set["subsidiary"])
if isinstance(query_set["is_reviewed"], str):
if query_set["is_reviewed"] == "reviewed":
base_query &= Q(is_reviewed=True)
elif query_set["is_reviewed"] == "not reviewed":
base_query &= Q(is_reviewed=False)
# elif query_set["is_reviewed"] == "all":
# pass
errors = []
# Create a placeholder to fill
accuracy = {"feedback" :{"imei_number": IterAvg(),
"purchase_date": IterAvg(),
"retailername": IterAvg(),
"sold_to_party": IterAvg(),},
"reviewed" :{"imei_number": IterAvg(),
"purchase_date": IterAvg(),
"retailername": IterAvg(),
"sold_to_party": IterAvg(),}
} # {"imei": {"acc": 0.1, count: 1}, ...}
time_cost = {"invoice": IterAvg(),
"imei": IterAvg()}
number_images = 0
number_bad_images = 0
# TODO: Multithreading
# Calculate accuracy, processing time, ....Then save.
subscription_requests = SubscriptionRequest.objects.filter(base_query).order_by('created_at')
report: Report = \
Report.objects.filter(report_id=report_id).first()
# TODO: number of transaction by doc type
num_request = 0
report_files = []
report_engine = ReportAccumulateByRequest(report.subsidiary)
for request in subscription_requests:
if request.status != 200 or not (request.reviewed_result or request.feedback_result):
# Failed requests or lack of reviewed_result/feedback_result
continue
request_att, _report_files = calculate_a_request(report, request)
report_files += _report_files
report_engine.add(request, _report_files)
request.feedback_accuracy = {"imei_number" : mean_list(request_att["acc"]["feedback"].get("imei_number", [None])),
"purchase_date" : mean_list(request_att["acc"]["feedback"].get("purchase_date", [None])),
"retailername" : mean_list(request_att["acc"]["feedback"].get("retailername", [None])),
"sold_to_party" : mean_list(request_att["acc"]["feedback"].get("sold_to_party", [None]))}
request.reviewed_accuracy = {"imei_number" : mean_list(request_att["acc"]["reviewed"].get("imei_number", [None])),
"purchase_date" : mean_list(request_att["acc"]["reviewed"].get("purchase_date", [None])),
"retailername" : mean_list(request_att["acc"]["reviewed"].get("retailername", [None])),
"sold_to_party" : mean_list(request_att["acc"]["reviewed"].get("sold_to_party", [None]))}
request.save()
number_images += request_att["total_images"]
number_bad_images += request_att["bad_images"]
update_temp_accuracy(accuracy["feedback"], request_att["acc"]["feedback"], keys=["imei_number", "purchase_date", "retailername", "sold_to_party"])
update_temp_accuracy(accuracy["reviewed"], request_att["acc"]["reviewed"], keys=["imei_number", "purchase_date", "retailername", "sold_to_party"])
time_cost["imei"].add(request_att["time_cost"].get("imei", []))
time_cost["invoice"].add(request_att["time_cost"].get("invoice", []))
errors += request_att["err"]
num_request += 1
report_engine.save(query_set.get("is_daily_report", False), query_set["include_test"])
transaction_att = count_transactions(start_date, end_date)
# Do saving process
report.number_request = num_request
report.number_images = number_images
report.number_imei = time_cost["imei"].count
report.number_invoice = time_cost["invoice"].count
report.number_bad_images = number_bad_images
# FIXME: refactor this data stream for endurability
report.average_OCR_time = {"invoice": time_cost["invoice"](), "imei": time_cost["imei"](),
"invoice_count": time_cost["invoice"].count, "imei_count": time_cost["imei"].count}
report.average_OCR_time["avg"] = (report.average_OCR_time["invoice"]*report.average_OCR_time["invoice_count"] + report.average_OCR_time["imei"]*report.average_OCR_time["imei_count"])/(report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) if (report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) > 0 else None
report.number_imei_transaction = transaction_att.get("imei", 0)
report.number_invoice_transaction = transaction_att.get("invoice", 0)
acumulated_acc = {"feedback": {},
"reviewed": {}}
for acc_type in ["feedback", "reviewed"]:
avg_acc = IterAvg()
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
acumulated_acc[acc_type][key] = accuracy[acc_type][key]()
acumulated_acc[acc_type][key+"_count"] = accuracy[acc_type][key].count
avg_acc.add_avg(acumulated_acc[acc_type][key], acumulated_acc[acc_type][key+"_count"])
acumulated_acc[acc_type]["avg"] = avg_acc()
report.feedback_accuracy = acumulated_acc["feedback"]
report.reviewed_accuracy = acumulated_acc["reviewed"]
report.errors = "|".join(errors)
report.status = "Ready"
report.save()
# Saving a xlsx file
report_files = ReportFile.objects.filter(report=report)
data = extract_report_detail_list(report_files, lower=True)
data_workbook = dict2xlsx(data, _type='report_detail')
local_workbook = save_workbook_file(report.report_id + ".xlsx", report, data_workbook)
s3_key=save_report_to_S3(report.report_id, local_workbook)
except IndexError as e:
print(e)
traceback.print_exc()
print("NotFound request by report id, %d", report_id)
except Exception as e:
print("[ERROR]: an error occured while processing report: ", report_id)
traceback.print_exc()
return 400

View File

@ -42,7 +42,7 @@ app.conf.update({
Queue('remove_local_file'),
Queue('csv_feedback'),
Queue('report'),
Queue('report_2'),
],
'task_routes': {
'process_sap_invoice_result': {'queue': 'invoice_sap_rs'},
@ -61,6 +61,7 @@ app.conf.update({
'remove_local_file': {'queue': "remove_local_file"},
'csv_feedback': {'queue': "csv_feedback"},
'make_a_report': {'queue': "report"},
'make_a_report_2': {'queue': "report_2"},
}
})

View File

@ -0,0 +1,18 @@
# Generated by Django 4.1.3 on 2024-02-04 23:32
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('fwd_api', '0178_alter_reportfile_acc'),
]
operations = [
migrations.AddField(
model_name='reportfile',
name='is_bad_image',
field=models.BooleanField(default=False),
),
]

View File

@ -0,0 +1,18 @@
# Generated by Django 4.1.3 on 2024-02-05 02:44
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('fwd_api', '0179_reportfile_is_bad_image'),
]
operations = [
migrations.AlterField(
model_name='reportfile',
name='time_cost',
field=models.FloatField(default=None, null=True),
),
]

View File

@ -16,6 +16,7 @@ class ReportFile(models.Model):
# Data
S3_uploaded = models.BooleanField(default=False)
doc_type = models.CharField(max_length=200)
is_bad_image = models.BooleanField(default=False)
predict_result = models.JSONField(null=True)
feedback_result = models.JSONField(null=True)
@ -25,7 +26,7 @@ class ReportFile(models.Model):
reviewed_accuracy = models.JSONField(null=True)
acc = models.FloatField(default=0, null=True)
time_cost = models.FloatField(default=0)
time_cost = models.FloatField(default=None, null=True)
is_reviewed = models.CharField(default="NA", max_length=5) # NA, No, Yes
bad_image_reason = models.TextField(default="")
counter_measures = models.TextField(default="")

View File

@ -5,14 +5,301 @@ import copy
from typing import Any
from .ocr_utils.ocr_metrics import eval_ocr_metric
from .ocr_utils.sbt_report import post_processing_str
import uuid
from fwd_api.models import SubscriptionRequest, SubscriptionRequestFile, ReportFile
from ..celery_worker.client_connector import c_connector
from django.db.models import Q
from django.utils import timezone
import redis
from fwd import settings
from ..models import SubscriptionRequest, Report, ReportFile
import json
BAD_THRESHOLD = 0.75
valid_keys = ["retailername", "sold_to_party", "purchase_date", "imei_number"]
class ReportAccumulateByRequest:
def __init__(self, sub):
self.redis_client = redis.Redis(host=settings.REDIS_HOST, port=settings.REDIS_PORT, decode_responses=True)
self.sub = sub
self.current_time = None
self.data = {} # {"month": [total, {"day": day_data}]}
self.total_format = {
'subs': "+",
'extraction_date': "Subtotal ()",
'total_images': 0,
'images_quality': {
'successful': 0,
'successful_percent': 0,
'bad': 0,
'bad_percent': 0
},
'average_accuracy_rate': {
'imei': IterAvg(),
'purchase_date': IterAvg(),
'retailer_name': IterAvg(),
'sold_to_party': IterAvg()
},
'average_processing_time': {
'imei': IterAvg(),
'invoice': IterAvg()
},
'usage': {
'imei':0,
'invoice': 0,
'request': 0
},
'feedback_accuracy': {
'imei_number': IterAvg(),
'purchase_date': IterAvg(),
'retailername': IterAvg(),
'sold_to_party': IterAvg()
},
'reviewed_accuracy': {
'imei_number': IterAvg(),
'purchase_date': IterAvg(),
'retailername': IterAvg(),
'sold_to_party': IterAvg()
},
'num_request': 0
}
self.day_format = {
'subs': sub,
'extraction_date': "",
'num_imei': 0,
'num_invoice': 0,
'total_images': 0,
'images_quality': {
'successful': 0,
'successful_percent': 0,
'bad': 0,
'bad_percent': 0
},
'average_accuracy_rate': {
'imei': IterAvg(),
'purchase_date': IterAvg(),
'retailer_name': IterAvg(),
'sold_to_party': IterAvg()
},
'average_processing_time': {
'imei': IterAvg(),
'invoice': IterAvg()
},
'usage': {
'imei': 0,
'invoice': 0,
'request': 0
},
'feedback_accuracy': {
'imei_number': IterAvg(),
'purchase_date': IterAvg(),
'retailername': IterAvg(),
'sold_to_party': IterAvg()
},
'reviewed_accuracy': {
'imei_number': IterAvg(),
'purchase_date': IterAvg(),
'retailername': IterAvg(),
'sold_to_party': IterAvg()
},
"report_files": [],
'num_request': 0
},
@staticmethod
def update_total(total, report_file):
total["total_images"] += 1
total["images_quality"]["successful"] += 1 if not report_file.is_bad_image else 0
total["images_quality"]["bad"] += 1 if report_file.is_bad_image else 0
print(f"[DEBUG]: report_file.reviewed_accuracy: {report_file.reviewed_accuracy}")
print(f"[DEBUG]: report_file.feedback_accuracy: {report_file.feedback_accuracy}")
if sum([len(report_file.reviewed_accuracy[x]) for x in report_file.reviewed_accuracy.keys() if "_count" not in x]) > 0 :
total["average_accuracy_rate"]["imei"].add(report_file.reviewed_accuracy.get("imei_number", []))
total["average_accuracy_rate"]["purchase_date"].add(report_file.reviewed_accuracy.get("purchase_date", []))
total["average_accuracy_rate"]["retailer_name"].add(report_file.reviewed_accuracy.get("retailername", []))
total["average_accuracy_rate"]["sold_to_party"].add(report_file.reviewed_accuracy.get("sold_to_party", []))
elif sum([len(report_file.feedback_accuracy[x]) for x in report_file.feedback_accuracy.keys() if "_count" not in x]) > 0:
total["average_accuracy_rate"]["imei"].add(report_file.feedback_accuracy.get("imei_number", []))
total["average_accuracy_rate"]["purchase_date"].add(report_file.feedback_accuracy.get("purchase_date", []))
total["average_accuracy_rate"]["retailer_name"].add(report_file.feedback_accuracy.get("retailername", []))
total["average_accuracy_rate"]["sold_to_party"].add(report_file.feedback_accuracy.get("sold_to_party", []))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
total["feedback_accuracy"][key].add(report_file.feedback_accuracy.get(key, []))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
total["reviewed_accuracy"][key].add(report_file.reviewed_accuracy.get(key, []))
if not total["average_processing_time"].get(report_file.doc_type, None):
print(f"[WARM]: Weird doctype: {report_file.doc_type}")
total["average_processing_time"] = IterAvg()
total["average_processing_time"][report_file.doc_type].add_avg(report_file.time_cost, 1) if report_file.time_cost else 0
total["usage"]["imei"] += 1 if report_file.doc_type == "imei" else 0
total["usage"]["invoice"] += 1 if report_file.doc_type == "invoice" else 0
return total
@staticmethod
def update_day(day_data, report_file):
day_data["total_images"] += 1
day_data["images_quality"]["successful"] += 1 if not report_file.is_bad_image else 0
day_data["images_quality"]["bad"] += 1 if report_file.is_bad_image else 0
day_data["num_imei"] += 1 if report_file.doc_type == "imei" else 0
day_data["num_invoice"] += 1 if report_file.doc_type == "invoice" else 0
if sum([len(report_file.reviewed_accuracy[x]) for x in report_file.reviewed_accuracy.keys() if "_count" not in x]) > 0 :
day_data["average_accuracy_rate"]["imei"].add(report_file.reviewed_accuracy.get("imei_number", 0))
day_data["average_accuracy_rate"]["purchase_date"].add(report_file.reviewed_accuracy.get("purchase_date", 0))
day_data["average_accuracy_rate"]["retailer_name"].add(report_file.reviewed_accuracy.get("retailername", 0))
day_data["average_accuracy_rate"]["sold_to_party"].add(report_file.reviewed_accuracy.get("sold_to_party", 0))
elif sum([len(report_file.feedback_accuracy[x]) for x in report_file.feedback_accuracy.keys() if "_count" not in x]) > 0:
day_data["average_accuracy_rate"]["imei"].add(report_file.feedback_accuracy.get("imei_number", 0))
day_data["average_accuracy_rate"]["purchase_date"].add(report_file.feedback_accuracy.get("purchase_date", 0))
day_data["average_accuracy_rate"]["retailer_name"].add(report_file.feedback_accuracy.get("retailername", 0))
day_data["average_accuracy_rate"]["sold_to_party"].add(report_file.feedback_accuracy.get("sold_to_party", 0))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
day_data["feedback_accuracy"][key].add(report_file.feedback_accuracy.get(key, 0))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
day_data["reviewed_accuracy"][key].add(report_file.reviewed_accuracy.get(key, 0))
if not day_data["average_processing_time"].get(report_file.doc_type, None):
print(f"[WARM]: Weird doctype: {report_file.doc_type}")
day_data["average_processing_time"] = IterAvg()
day_data["average_processing_time"][report_file.doc_type].add_avg(report_file.time_cost, 1) if report_file.time_cost else 0
return day_data
def add(self, request, report_files):
this_month = request.created_at.strftime("%Y%m")
this_day = request.created_at.strftime("%Y%m%d")
if not self.data.get(this_month, None):
self.data[this_month] = [copy.deepcopy(self.total_format), {}]
if not self.data[this_month][1].get(this_day, None):
self.data[this_month][1][this_day] = copy.deepcopy(self.day_format)[0]
self.data[this_month][1][this_day]['extraction_date'] = request.created_at.strftime("%Y-%m-%d")
usage = self.count_transactions_within_day(this_day)
self.data[this_month][1][this_day]["usage"]["imei"] = usage.get("imei", 0)
self.data[this_month][1][this_day]["usage"]["invoice"] = usage.get("invoice", 0)
self.data[this_month][1][this_day]["usage"]["request"] = usage.get("request", 0)
self.data[this_month][1][this_day]['num_request'] += 1
self.data[this_month][0]['num_request'] += 1
for report_file in report_files:
self.data[this_month][0] = self.update_total(self.data[this_month][0], report_file) # Update the subtotal within the month
self.data[this_month][1][this_day] = self.update_day(self.data[this_month][1][this_day], report_file) # Update the subtotal of the day
# save repot detail
def count_transactions_within_day(self, date_string):
# convert this day into timezone.datetime at UTC
start_date = datetime.strptime(date_string, "%Y%m%d")
start_date_utc = timezone.make_aware(start_date, timezone=timezone.utc)
end_date_utc = start_date_utc + timezone.timedelta(days=1)
return count_transactions(start_date_utc, end_date_utc)
def save(self, root_report_id, is_daily_report=False, include_test=False):
report_data = self.get()
fine_data = []
save_data = {"file": {"overview": f"{root_report_id}/{root_report_id}.xlsx"},
"data": fine_data} # {"sub_report_id": "S3 location", "data": fine_data}
# extract data
for month in report_data.keys():
fine_data.append(report_data[month][0])
for day in report_data[month][1].keys():
fine_data.append(report_data[month][1][day])
# save daily reports
report_id = root_report_id + "_" + day
start_date = datetime.strptime(day, "%Y%m%d")
start_date_utc = timezone.make_aware(start_date, timezone=timezone.utc)
end_date_utc = start_date_utc + timezone.timedelta(days=1)
_average_OCR_time = {"invoice": self.data[month][1][day]["average_processing_time"]["invoice"](), "imei": self.data[month][1][day]["average_processing_time"]["imei"](),
"invoice_count": self.data[month][1][day]["average_processing_time"]["invoice"].count, "imei_count": self.data[month][1][day]["average_processing_time"]["imei"].count}
_average_OCR_time["avg"] = (_average_OCR_time["invoice"]*_average_OCR_time["invoice_count"] + _average_OCR_time["imei"]*_average_OCR_time["imei_count"])/(_average_OCR_time["imei_count"] + _average_OCR_time["invoice_count"]) if (_average_OCR_time["imei_count"] + _average_OCR_time["invoice_count"]) > 0 else None
acumulated_acc = {"feedback_accuracy": {},
"reviewed_accuracy": {}}
for acc_type in ["feedback_accuracy", "reviewed_accuracy"]:
avg_acc = IterAvg()
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
acumulated_acc[acc_type][key] = self.data[month][1][day][acc_type][key]()
acumulated_acc[acc_type][key+"_count"] = self.data[month][1][day][acc_type][key].count
avg_acc.add_avg(acumulated_acc[acc_type][key], acumulated_acc[acc_type][key+"_count"])
acumulated_acc[acc_type]["avg"] = avg_acc()
acumulated_acc[acc_type]["avg_count"] = avg_acc.count
new_report: Report = Report(
report_id=report_id,
is_daily_report=is_daily_report,
subsidiary=self.sub.lower().replace(" ", ""),
include_test=include_test,
start_at=start_date_utc,
end_at=end_date_utc,
status="Ready",
number_request=report_data[month][1][day]["num_request"],
number_images=report_data[month][1][day]["total_images"],
number_imei=report_data[month][1][day]["num_imei"],
number_invoice=report_data[month][1][day]["num_invoice"],
number_bad_images=report_data[month][1][day]["images_quality"]["bad"],
average_OCR_time=_average_OCR_time,
number_imei_transaction=report_data[month][1][day]["usage"]["imei"],
number_invoice_transaction=report_data[month][1][day]["usage"]["invoice"],
feedback_accuracy=acumulated_acc["feedback_accuracy"],
reviewed_accuracy=acumulated_acc["reviewed_accuracy"],
)
new_report.save()
# save data to redis for overview retrieval
self.redis_client.set(settings.OVERVIEW_REPORT_KEY, json.dumps(save_data))
print(f'[DEBUG]: fine_data: {fine_data}')
def get(self) -> Any:
# FIXME: This looks like a junk
_data = copy.deepcopy(self.data)
for month in _data.keys():
num_transaction_imei = 0
num_transaction_invoice = 0
for day in _data[month][1].keys():
num_transaction_imei += _data[month][1][day]["usage"].get("imei", 0)
num_transaction_invoice += _data[month][1][day]["usage"].get("invoice", 0)
_data[month][1][day]["average_accuracy_rate"]["imei"] = _data[month][1][day]["average_accuracy_rate"]["imei"]()
_data[month][1][day]["average_accuracy_rate"]["purchase_date"] = _data[month][1][day]["average_accuracy_rate"]["purchase_date"]()
_data[month][1][day]["average_accuracy_rate"]["retailer_name"] = _data[month][1][day]["average_accuracy_rate"]["retailer_name"]()
_data[month][1][day]["average_accuracy_rate"]["sold_to_party"] = _data[month][1][day]["average_accuracy_rate"]["sold_to_party"]()
_data[month][1][day]["average_processing_time"]["imei"] = _data[month][1][day]["average_processing_time"]["imei"]()
_data[month][1][day]["average_processing_time"]["invoice"] = _data[month][1][day]["average_processing_time"]["invoice"]()
_data[month][1][day]["feedback_accuracy"]["imei_number"] = _data[month][1][day]["feedback_accuracy"]["imei_number"]()
_data[month][1][day]["feedback_accuracy"]["purchase_date"] = _data[month][1][day]["feedback_accuracy"]["purchase_date"]()
_data[month][1][day]["feedback_accuracy"]["retailername"] = _data[month][1][day]["feedback_accuracy"]["retailername"]()
_data[month][1][day]["feedback_accuracy"]["sold_to_party"] = _data[month][1][day]["feedback_accuracy"]["sold_to_party"]()
_data[month][1][day]["reviewed_accuracy"]["imei_number"] = _data[month][1][day]["reviewed_accuracy"]["imei_number"]()
_data[month][1][day]["reviewed_accuracy"]["purchase_date"] = _data[month][1][day]["reviewed_accuracy"]["purchase_date"]()
_data[month][1][day]["reviewed_accuracy"]["retailername"] = _data[month][1][day]["reviewed_accuracy"]["retailername"]()
_data[month][1][day]["reviewed_accuracy"]["sold_to_party"] = _data[month][1][day]["reviewed_accuracy"]["sold_to_party"]()
_data[month][0]["usage"]["imei"] = num_transaction_imei
_data[month][0]["usage"]["invoice"] = num_transaction_invoice
_data[month][0]["average_accuracy_rate"]["imei"] = _data[month][0]["average_accuracy_rate"]["imei"]()
_data[month][0]["average_accuracy_rate"]["purchase_date"] = _data[month][0]["average_accuracy_rate"]["purchase_date"]()
_data[month][0]["average_accuracy_rate"]["retailer_name"] = _data[month][0]["average_accuracy_rate"]["retailer_name"]()
_data[month][0]["average_accuracy_rate"]["sold_to_party"] = _data[month][0]["average_accuracy_rate"]["sold_to_party"]()
_data[month][0]["average_processing_time"]["imei"] = _data[month][0]["average_processing_time"]["imei"]()
_data[month][0]["average_processing_time"]["invoice"] = _data[month][0]["average_processing_time"]["invoice"]()
_data[month][0]["feedback_accuracy"]["imei_number"] = _data[month][0]["feedback_accuracy"]["imei_number"]()
_data[month][0]["feedback_accuracy"]["purchase_date"] = _data[month][0]["feedback_accuracy"]["purchase_date"]()
_data[month][0]["feedback_accuracy"]["retailername"] = _data[month][0]["feedback_accuracy"]["retailername"]()
_data[month][0]["feedback_accuracy"]["sold_to_party"] = _data[month][0]["feedback_accuracy"]["sold_to_party"]()
_data[month][0]["reviewed_accuracy"]["imei_number"] = _data[month][0]["reviewed_accuracy"]["imei_number"]()
_data[month][0]["reviewed_accuracy"]["purchase_date"] = _data[month][0]["reviewed_accuracy"]["purchase_date"]()
_data[month][0]["reviewed_accuracy"]["retailername"] = _data[month][0]["reviewed_accuracy"]["retailername"]()
_data[month][0]["reviewed_accuracy"]["sold_to_party"] = _data[month][0]["reviewed_accuracy"]["sold_to_party"]()
return _data
class MonthReportAccumulate:
def __init__(self):
self.month = None
@ -89,7 +376,7 @@ class MonthReportAccumulate:
self.total["usage"]["invoice"] += report.number_invoice_transaction
def add(self, report):
report_month = report.created_at.month
report_month = report.start_at.month
if self.month is None:
self.month = report_month
@ -103,7 +390,7 @@ class MonthReportAccumulate:
new_data = copy.deepcopy(self.data_format)[0]
new_data["num_imei"] = report.number_imei
new_data["subs"] = report.subsidiary
new_data["extraction_date"] = report.created_at
new_data["extraction_date"] = report.start_at
new_data["num_invoice"] = report.number_invoice
new_data["total_images"] = report.number_images
new_data["images_quality"]["successful"] = report.number_images - report.number_bad_images
@ -195,6 +482,16 @@ class IterAvg:
def __call__(self):
return self.avg
def validate_feedback_file(feedback, predict):
if feedback:
imei_feedback = feedback.get("imei_number", [])
imei_feedback = [x for x in imei_feedback if x != ""]
num_imei_feedback = len(imei_feedback)
num_imei_predict = len(predict.get("imei_number", []))
if num_imei_feedback != num_imei_predict:
return False
return True
def first_of_list(the_list):
if not the_list:
return None
@ -254,6 +551,10 @@ def count_transactions(start_date, end_date):
transaction_att[doc_type] = 1
else:
transaction_att[doc_type] += 1
if not transaction_att.get("request", None):
transaction_att["request"] = 1
else:
transaction_att["request"] += 1
return transaction_att
def convert_datetime_format(date_string: str, is_gt=False) -> str:
@ -387,6 +688,7 @@ def calculate_and_save_subcription_file(report, request):
reviewed_accuracy=att["acc"]["reviewed"],
acc=att["avg_acc"],
time_cost=image.processing_time,
is_bad_image=att["is_bad_image"],
bad_image_reason=image.reason,
counter_measures=image.counter_measures,
error="|".join(att["err"])
@ -416,6 +718,72 @@ def calculate_and_save_subcription_file(report, request):
return request_att
def calculate_a_request(report, request):
request_att = {"acc": {"feedback": {"imei_number": [],
"purchase_date": [],
"retailername": [],
"sold_to_party": [],
},
"reviewed": {"imei_number": [],
"purchase_date": [],
"retailername": [],
"sold_to_party": [],
}},
"err": [],
"time_cost": {},
"total_images": 0,
"bad_images": 0}
images = SubscriptionRequestFile.objects.filter(request=request)
report_files = []
for image in images:
status, att = calculate_subcription_file(image)
if status != 200:
continue
image.feedback_accuracy = att["acc"]["feedback"]
image.reviewed_accuracy = att["acc"]["reviewed"]
image.is_bad_image_quality = att["is_bad_image"]
image.save()
new_report_file = ReportFile(report=report,
correspond_request_id=request.request_id,
correspond_redemption_id=request.redemption_id,
doc_type=image.doc_type,
predict_result=image.predict_result,
feedback_result=image.feedback_result,
reviewed_result=image.reviewed_result,
feedback_accuracy=att["acc"]["feedback"],
reviewed_accuracy=att["acc"]["reviewed"],
acc=att["avg_acc"],
is_bad_image=att["is_bad_image"],
time_cost=image.processing_time,
bad_image_reason=image.reason,
counter_measures=image.counter_measures,
error="|".join(att["err"])
)
report_files.append(new_report_file)
if request_att["time_cost"].get(image.doc_type, None):
request_att["time_cost"][image.doc_type].append(image.processing_time)
else:
request_att["time_cost"][image.doc_type] = [image.processing_time]
try:
request_att["acc"]["feedback"]["imei_number"] += att["acc"]["feedback"]["imei_number"]
request_att["acc"]["feedback"]["purchase_date"] += att["acc"]["feedback"]["purchase_date"]
request_att["acc"]["feedback"]["retailername"] += att["acc"]["feedback"]["retailername"]
request_att["acc"]["feedback"]["sold_to_party"] += att["acc"]["feedback"]["sold_to_party"]
request_att["acc"]["reviewed"]["imei_number"] += att["acc"]["reviewed"]["imei_number"]
request_att["acc"]["reviewed"]["purchase_date"] += att["acc"]["reviewed"]["purchase_date"]
request_att["acc"]["reviewed"]["retailername"] += att["acc"]["reviewed"]["retailername"]
request_att["acc"]["reviewed"]["sold_to_party"] += att["acc"]["reviewed"]["sold_to_party"]
request_att["bad_images"] += int(att["is_bad_image"])
request_att["total_images"] += 1
request_att["err"] += att["err"]
except Exception as e:
print(e)
continue
return request_att, report_files
def calculate_subcription_file(subcription_request_file):
att = {"acc": {"feedback": {},
@ -518,5 +886,5 @@ def calculate_attributions(request): # for one request, return in order
return acc, data, time_cost, image_quality_num, error
def shadow_report(report_id, query):
c_connector.make_a_report(
c_connector.make_a_report_2(
(report_id, query))

View File

@ -13,8 +13,8 @@ class RedisUtils:
request_id: str
data: dict
image_index: int
"""
self.redis_client.hset(request_id, image_index, json.dumps(data))
"""request_id
self.redis_client.hset(, image_index, json.dumps(data))
self.redis_client.expire(request_id, 3600)
def get_all_cache(self, request_id):

View File

@ -0,0 +1,9 @@
def is_the_same_day(first_day, second_day):
if first_day.day == second_day.day and first_day.month == second_day.month and first_day.year == second_day.year:
return True
return False
def is_the_same_month(first_day, second_day):
if first_day.month == second_day.month and first_day.year == second_day.year:
return True
return False

View File

@ -1,24 +1,11 @@
###################
# BUILD FOR LOCAL DEVELOPMENT
###################
FROM node:16-alpine AS development
WORKDIR /app/
COPY --chown=node:node package*.json ./
RUN npm ci
COPY --chown=node:node . .
USER node
FROM node:21-alpine AS build
###################
# BUILD FOR PRODUCTION
###################
FROM node:16-alpine AS build
WORKDIR /app/
ENV NODE_ENV production
COPY --chown=node:node package*.json ./
COPY --chown=node:node --from=development /app/node_modules ./node_modules
RUN npm install
COPY --chown=node:node . .
RUN npm run build
RUN npm ci --only=production && npm cache clean --force
RUN npm cache clean --force
USER node
###################

View File

@ -1,61 +0,0 @@
server {
# listen {{port}};
# listen [::]:{{port}};
# server_name localhost;
client_max_body_size 100M;
#access_log /var/log/nginx/host.access.log main;
location ~ ^/api {
proxy_pass {{proxy_server}};
proxy_read_timeout 300;
proxy_connect_timeout 300;
proxy_send_timeout 300;
}
location /static/drf_spectacular_sidecar/ {
alias /backend-static/drf_spectacular_sidecar/;
}
location / {
root /usr/share/nginx/html;
index index.html index.htm;
try_files $uri /index.html;
}
location ~ ^/static/drf_spectacular_sidecar/swagger-ui-dist {
proxy_pass {{proxy_server}};
}
#error_page 404 /404.html;
# redirect server error pages to the static page /50x.html
#
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html;
}
# proxy the PHP scripts to Apache listening on 127.0.0.1:80
#
#location ~ \.php$ {
# proxy_pass http://127.0.0.1;
#}
# pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000
#
#location ~ \.php$ {
# root html;
# fastcgi_pass 127.0.0.1:9000;
# fastcgi_index index.php;
# fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_name;
# include fastcgi_params;
#}
# deny access to .htaccess files, if Apache's document root
# concurs with nginx's one
#
#location ~ /\.ht {
# deny all;
#}
}

View File

@ -2,7 +2,7 @@
"name": "sbt-ui",
"version": "0.1.0",
"scripts": {
"start": "NODE_ENV=development npm run extract && npm run compile && vite --host",
"start": "NODE_ENV=development vite --host",
"build": "NODE_ENV=production npm run extract && npm run compile && tsc && vite build",
"serve": "vite preview",
"extract": "lingui extract --clean",

View File

@ -1,5 +0,0 @@
#!/bin/sh
# update port and BD proxy
sed "s#{{proxy_server}}#$VITE_PROXY#g" /configs/nginx.conf > /etc/nginx/conf.d/default.conf
# run up
nginx -g 'daemon off;'

View File

@ -5,7 +5,7 @@ import React from 'react';
interface DataType {
key: React.Key;
subSidiaries: string;
extractionDate: string | Date;
extractionDate: string;
snOrImeiNumber: number;
invoiceNumber: number;
totalImages: number;
@ -28,12 +28,33 @@ const columns: TableColumnsType<DataType> = [
dataIndex: 'subSidiaries',
key: 'subSidiaries',
width: '100px',
render: (_, record) => {
if (record.subSidiaries === '+') return '';
return record.subSidiaries;
},
filters: [
{ text: 'all', value: 'all' },
{ text: 'sesp', value: 'sesp' },
{ text: 'seau', value: 'seau' },
],
filterMode: 'menu',
onFilter: (value: string, record) => record.subSidiaries.includes(value),
},
{
title: 'OCR extraction date',
dataIndex: 'extractionDate',
key: 'extractionDate',
width: '130px',
render: (_, record) => {
if (record.extractionDate.includes('Subtotal'))
return (
<span style={{ fontWeight: 'bold' }}>{record.extractionDate}</span>
);
return record.extractionDate;
},
filters: [{ text: 'Subtotal', value: 'Subtotal' }],
filterMode: 'menu',
onFilter: (value: string, record) => record.extractionDate.includes(value),
},
{
title: 'OCR Images',
@ -73,7 +94,7 @@ const columns: TableColumnsType<DataType> = [
key: 'successfulPercentage',
width: '120px',
render: (_, record) => {
return <span>{(record.successfulPercentage * 100).toFixed(2)}</span>;
return <span>{(record.successfulPercentage * 100)?.toFixed(2)}</span>;
},
},
{
@ -91,7 +112,7 @@ const columns: TableColumnsType<DataType> = [
const isAbnormal = record.badPercentage * 100 > 10;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{(record.badPercentage * 100).toFixed(2)}
{(record.badPercentage * 100)?.toFixed(2)}
</span>
);
},
@ -111,7 +132,7 @@ const columns: TableColumnsType<DataType> = [
const isAbnormal = record.snImeiAAR * 100 < 98;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{(record.snImeiAAR * 100).toFixed(2)}
{(record.snImeiAAR * 100)?.toFixed(2)}
</span>
);
},
@ -139,7 +160,7 @@ const columns: TableColumnsType<DataType> = [
const isAbnormal = record.retailerNameAAR * 100 < 98;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{(record.retailerNameAAR * 100).toFixed(2)}
{(record.retailerNameAAR * 100)?.toFixed(2)}
</span>
);
},
@ -157,7 +178,7 @@ const columns: TableColumnsType<DataType> = [
const isAbnormal = record.snImeiAPT > 2;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record.snImeiAPT.toFixed(2)}
{record?.snImeiAPT?.toFixed(2)}
</span>
);
},
@ -170,7 +191,7 @@ const columns: TableColumnsType<DataType> = [
const isAbnormal = record.invoiceAPT > 2;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record.invoiceAPT.toFixed(2)}
{record?.invoiceAPT?.toFixed(2)}
</span>
);
},
@ -215,234 +236,31 @@ const ReportOverViewTable: React.FC<ReportOverViewTableProps> = ({
isLoading,
data,
}) => {
// const [pagination, setPagination] = useState({
// page: 1,
// page_size: 10,
// });
// const { isLoading, data } = useOverViewReport({
// page: pagination.page,
// });
console.log('check >>>', pagination, isLoading, data);
const overviewDataResponse = data as any;
const dataSubsRows = overviewDataResponse?.overview_data
.map((item, index) => {
if (item.subs.includes('+')) {
return {
key: index,
subSidiaries: '',
extractionDate: item.extraction_date,
snOrImeiNumber: '',
invoiceNumber: '',
totalImages: item.total_images,
successfulNumber: item.images_quality.successful,
successfulPercentage: item.images_quality.successful_percent,
badNumber: item.images_quality.bad,
badPercentage: item.images_quality.bad_percent,
snImeiAAR: item.average_accuracy_rate.imei,
purchaseDateAAR: item.average_accuracy_rate.purchase_date,
retailerNameAAR: item.average_accuracy_rate.retailer_name,
snImeiAPT: item.average_processing_time.imei,
invoiceAPT: item.average_processing_time.invoice,
snImeiTC: item.usage.imei,
invoiceTC: item.usage.invoice,
};
} else {
return null;
}
})
.filter((item) => item);
const dataSubsRows = overviewDataResponse?.overview_data.map(
(item, index) => {
return {
key: index,
subSidiaries: item.subs,
extractionDate: item.extraction_date,
snOrImeiNumber: item.num_imei,
invoiceNumber: item.num_invoice,
totalImages: item.total_images,
successfulNumber: item.images_quality.successful,
successfulPercentage: item.images_quality.successful_percent,
badNumber: item.images_quality.bad,
badPercentage: item.images_quality.bad_percent,
snImeiAAR: item.average_accuracy_rate.imei,
purchaseDateAAR: item.average_accuracy_rate.purchase_date,
retailerNameAAR: item.average_accuracy_rate.retailer_name,
snImeiAPT: item.average_processing_time.imei,
invoiceAPT: item.average_processing_time.invoice,
snImeiTC: item.usage.imei,
invoiceTC: item.usage.invoice,
};
},
);
const expandedRowRender = () => {
const subData = overviewDataResponse?.overview_data
.map((item, index) => {
if (!item.subs.includes('+')) {
return {
key: index,
subSidiaries: item.subs,
extractionDate: item.extraction_date,
snOrImeiNumber: item.num_imei,
invoiceNumber: item.num_invoice,
totalImages: item.total_images,
successfulNumber: item.images_quality.successful,
successfulPercentage: item.images_quality.successful_percent,
badNumber: item.images_quality.bad,
badPercentage: item.images_quality.bad_percent,
snImeiAAR: item.average_accuracy_rate.imei,
purchaseDateAAR: item.average_accuracy_rate.purchase_date,
retailerNameAAR: item.average_accuracy_rate.retailer_name,
snImeiAPT: item.average_processing_time.imei,
invoiceAPT: item.average_processing_time.invoice,
snImeiTC: item.usage.imei,
invoiceTC: item.usage.invoice,
};
} else {
return null;
}
})
.filter((item) => item);
const subColumns: TableColumnsType<DataType> = [
{
title: 'Subs',
dataIndex: 'subSidiaries',
key: 'subSidiaries',
width: '100px',
},
{
title: 'OCR extraction date',
dataIndex: 'extractionDate',
key: 'extractionDate',
width: '130px',
render: (_, record) => {
return <span>{record?.extractionDate.toString().split('T')[0]}</span>;
},
},
{
title: 'SN/IMEI',
dataIndex: 'snOrImeiNumber',
key: 'snOrImeiNumber',
width: '50px',
},
{
title: 'Invoice',
dataIndex: 'invoiceNumber',
key: 'invoiceNumber',
width: '50px',
},
{
title: 'Total Images',
dataIndex: 'totalImages',
key: 'totalImages',
width: '130px',
},
{
title: 'Successful',
dataIndex: 'successfulNumber',
key: 'successfulNumber',
width: '50px',
},
{
title: '% Successful',
dataIndex: 'successfulPercentage',
key: 'successfulPercentage',
width: '120px',
render: (_, record) => {
return <span>{(record.successfulPercentage * 100).toFixed(2)}</span>;
},
},
{
title: 'Bad',
dataIndex: 'badNumber',
key: 'badNumber',
width: '30px',
},
{
title: '% Bad',
dataIndex: 'badPercentage',
key: 'badPercentage',
width: '60px',
render: (_, record) => {
const isAbnormal = record.badPercentage * 100 > 10;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{(record.badPercentage * 100).toFixed(2)}
</span>
);
},
},
{
title: 'IMEI / Serial no.',
dataIndex: 'snImeiAAR',
key: 'snImeiAAR',
width: '130px',
render: (_, record) => {
const isAbnormal = record.snImeiAAR * 100 < 98;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{(record.snImeiAAR * 100).toFixed(2)}
</span>
);
},
},
{
title: 'Purchase date',
dataIndex: 'purchaseDateAAR',
key: 'purchaseDateAAR',
width: '130px',
render: (_, record) => {
const isAbnormal = record.purchaseDateAAR * 100 < 98;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{(record.purchaseDateAAR * 100).toFixed(2)}
</span>
);
},
},
{
title: 'Retailer name',
dataIndex: 'retailerNameAAR',
key: 'retailerNameAAR',
width: '130px',
render: (_, record) => {
const isAbnormal = record.retailerNameAAR * 100 < 98;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{(record.retailerNameAAR * 100).toFixed(2)}
</span>
);
},
},
{
title: 'SN/IMEI',
dataIndex: 'snImeiAPT',
key: 'snImeiAPT',
render: (_, record) => {
const isAbnormal = record.snImeiAPT > 2;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record.snImeiAPT.toFixed(2)}
</span>
);
},
},
{
title: 'Invoice',
dataIndex: 'invoiceAPT',
key: 'invoiceAPT',
render: (_, record) => {
const isAbnormal = record.invoiceAPT > 2;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record.invoiceAPT.toFixed(2)}
</span>
);
},
},
{
title: 'SN/IMEI',
dataIndex: 'snImeiTC',
key: 'snImeiTC',
},
{
title: 'Invoice',
dataIndex: 'invoiceTC',
key: 'invoiceTC',
},
];
return (
<Table
columns={subColumns}
dataSource={subData}
pagination={false}
bordered
// showHeader={false}
/>
);
};
return (
<div>
<Table
@ -451,7 +269,6 @@ const ReportOverViewTable: React.FC<ReportOverViewTableProps> = ({
dataSource={dataSubsRows}
bordered
size='small'
expandable={{ expandedRowRender, defaultExpandedRowKeys: [0, 1] }}
scroll={{ x: 2000 }}
pagination={{
current: pagination.page,

View File

@ -65,9 +65,12 @@ const ReportTable: React.FC = () => {
dataIndex: 'Purchase Date Acc',
key: 'Purchase Date Acc',
render: (_, record) => {
const isAbnormal = record['Purchase Date Acc'] * 100 < 98;
return (
record['Purchase Date Acc'] &&
Number(record['Purchase Date Acc']).toFixed(2)
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record['Purchase Date Acc'] &&
(Number(record['Purchase Date Acc']) * 100)?.toFixed(2)}
</span>
);
},
},
@ -77,8 +80,12 @@ const ReportTable: React.FC = () => {
dataIndex: 'Retailer Acc',
key: 'Retailer Acc',
render: (_, record) => {
const isAbnormal = record['Retailer Acc'] * 100 < 98;
return (
record['Retailer Acc'] && Number(record['Retailer Acc']).toFixed(2)
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record['Retailer Acc'] &&
(Number(record['Retailer Acc']) * 100)?.toFixed(2)}
</span>
);
},
},
@ -87,7 +94,13 @@ const ReportTable: React.FC = () => {
dataIndex: 'IMEI Acc',
key: 'IMEI Acc',
render: (_, record) => {
return record['IMEI Acc'] && Number(record['IMEI Acc']).toFixed(2);
const isAbnormal = record['IMEI Acc'] * 100 < 98;
return (
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record['IMEI Acc'] &&
(Number(record['IMEI Acc']) * 100)?.toFixed(2)}
</span>
);
},
},
{
@ -95,8 +108,12 @@ const ReportTable: React.FC = () => {
dataIndex: 'Avg Accuracy',
key: 'Avg Accuracy',
render: (_, record) => {
const isAbnormal = record['Avg Accuracy'] * 100 < 98;
return (
record['Avg Accuracy'] && Number(record['Avg Accuracy']).toFixed(2)
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record['Avg Accuracy'] &&
(Number(record['Avg Accuracy']) * 100)?.toFixed(2)}
</span>
);
},
},
@ -105,9 +122,12 @@ const ReportTable: React.FC = () => {
dataIndex: 'Avg. Client Request Time',
key: 'Avg. Client Request Time',
render: (_, record) => {
const isAbnormal = record['Avg Client Request Time'] > 2;
return (
record['Avg Client Request Time'] &&
Number(record['Avg Client Request Time']).toFixed(2)
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record['Avg Client Request Time'] &&
Number(record['Avg Client Request Time'])?.toFixed(2)}
</span>
);
},
},
@ -116,9 +136,12 @@ const ReportTable: React.FC = () => {
dataIndex: 'Avg. OCR Processing Time',
key: 'Avg. OCR Processing Time',
render: (_, record) => {
const isAbnormal = record['Avg. OCR Processing Time'] > 2;
return (
record['Avg. OCR Processing Time'] &&
Number(record['Avg. OCR Processing Time']).toFixed(2)
<span style={{ color: isAbnormal ? 'red' : '' }}>
{record['Avg. OCR Processing Time'] &&
Number(record['Avg. OCR Processing Time'])?.toFixed(2)}
</span>
);
},
},

View File

@ -96,10 +96,8 @@ export async function downloadReport(report_id: string) {
let filename = "report.xlsx";
try {
let basename = response.headers['content-disposition'].split('filename=')[1].split('.')[0];
if (basename.charAt(0) === '_') {
basename = basename.substring(1);
}
filename = `${basename}.xlsx`
let extension = response.headers['content-disposition'].split('.')[1].split(';')[0];
filename = `${basename}.${extension}`
} catch(err) {
console.log(err);
}

View File

@ -84,12 +84,12 @@ services:
depends_on:
db-sbt:
condition: service_started
# command: sh -c "chmod -R 777 /app; sleep 5; python manage.py collectstatic --no-input &&
# python manage.py makemigrations &&
# python manage.py migrate &&
# python manage.py compilemessages &&
# gunicorn fwd.asgi:application -k uvicorn.workers.UvicornWorker --timeout 300 -b 0.0.0.0:9000" # pre-makemigrations on prod
command: bash -c "tail -f > /dev/null"
command: sh -c "chmod -R 777 /app; sleep 5; python manage.py collectstatic --no-input &&
python manage.py makemigrations &&
python manage.py migrate &&
python manage.py compilemessages &&
gunicorn fwd.asgi:application -k uvicorn.workers.UvicornWorker --timeout 300 -b 0.0.0.0:9000" # pre-makemigrations on prod
# command: bash -c "tail -f > /dev/null"
minio:
image: minio/minio

View File

@ -0,0 +1,17 @@
from datetime import datetime
# Assuming you have two datetime objects for the same day in different months
date_jan = datetime(2022, 2, 15, 12, 30, 0)
date_feb = datetime(2022, 2, 15, 8, 45, 0)
# Check if they are the same day
if date_jan.day == date_feb.day and date_jan.month == date_feb.month and date_jan.year == date_feb.year:
print("They are the same day")
else:
print("They are different days")
# Check if they are the same month
if date_jan.month == date_feb.month and date_jan.year == date_feb.year:
print("They are the same month")
else:
print("They are different months")