Merge pull request #83 from SDSRV-IDP/dev/20240308

Dev/20240308
This commit is contained in:
Phan Thành Trung 2024-03-12 15:55:22 +07:00 committed by GitHub Enterprise
commit 242df77176
6 changed files with 139 additions and 67 deletions

View File

@ -241,6 +241,7 @@ BAD_THRESHOLD = 0.75
NEED_REVIEW = 1.0 NEED_REVIEW = 1.0
SUB_FOR_BILLING = ["all", "seao"] SUB_FOR_BILLING = ["all", "seao"]
FIELD = ["imei_number", "purchase_date", "retailername", "sold_to_party", "invoice_no"]
CACHES = { CACHES = {
'default': { 'default': {

View File

@ -284,6 +284,7 @@ class AccuracyViewSet(viewsets.ViewSet):
return JsonResponse(status=status.HTTP_200_OK, data={"report_id": report_id}) return JsonResponse(status=status.HTTP_200_OK, data={"report_id": report_id})
# Redundant, will be removed by 19 March 2024
@extend_schema( @extend_schema(
parameters=[ parameters=[
OpenApiParameter( OpenApiParameter(
@ -417,6 +418,9 @@ class AccuracyViewSet(viewsets.ViewSet):
acc[key] = report.combined_accuracy.get(key, 0) if report.combined_accuracy else max([fb, rv]) acc[key] = report.combined_accuracy.get(key, 0) if report.combined_accuracy else max([fb, rv])
else: else:
acc[key] = None acc[key] = None
processing_time = report.average_OCR_time.get("avg", None) if report.average_OCR_time else None
if processing_time and processing_time == 0:
processing_time = None
data.append({ data.append({
"ID": report.id, "ID": report.id,
"Created Date": report.created_at, "Created Date": report.created_at,
@ -429,7 +433,7 @@ class AccuracyViewSet(viewsets.ViewSet):
"IMEI Acc": acc["imei_number"], "IMEI Acc": acc["imei_number"],
"Avg. Accuracy": acc["avg"], "Avg. Accuracy": acc["avg"],
"Avg. Client Request Time": report.average_client_time.get("avg", 0) if report.average_client_time else 0, "Avg. Client Request Time": report.average_client_time.get("avg", 0) if report.average_client_time else 0,
"Avg. OCR Processing Time": report.average_OCR_time.get("avg", 0) if report.average_OCR_time else 0, "Avg. OCR Processing Time": processing_time,
"report_id": report.report_id, "report_id": report.report_id,
"Subsidiary": map_subsidiary_short_to_long(report.subsidiary), "Subsidiary": map_subsidiary_short_to_long(report.subsidiary),
}) })
@ -544,7 +548,7 @@ class AccuracyViewSet(viewsets.ViewSet):
for key in keys: for key in keys:
if report_fine_data[i][key]: if report_fine_data[i][key]:
for x_key in report_fine_data[i][key].keys(): for x_key in report_fine_data[i][key].keys():
report_fine_data[i][key][x_key] = report_fine_data[i][key][x_key]*100 report_fine_data[i][key][x_key] = report_fine_data[i][key][x_key]*100 if report_fine_data[i][key][x_key] is not None else None
overview_filename = _subsidiary + "_" + duration + ".xlsx" overview_filename = _subsidiary + "_" + duration + ".xlsx"
data_workbook = dict2xlsx(report_fine_data, _type='report') data_workbook = dict2xlsx(report_fine_data, _type='report')

View File

@ -125,6 +125,8 @@ def make_a_report(report_id, query_set):
report.average_OCR_time = {"invoice": time_cost["invoice"](), "imei": time_cost["imei"](), report.average_OCR_time = {"invoice": time_cost["invoice"](), "imei": time_cost["imei"](),
"invoice_count": time_cost["invoice"].count, "imei_count": time_cost["imei"].count} "invoice_count": time_cost["invoice"].count, "imei_count": time_cost["imei"].count}
report.average_OCR_time["invoice"] = 0 if report.average_OCR_time["invoice"] is None else report.average_OCR_time["invoice"]
report.average_OCR_time["imei"] = 0 if report.average_OCR_time["imei"] is None else report.average_OCR_time["imei"]
report.average_OCR_time["avg"] = (report.average_OCR_time["invoice"]*report.average_OCR_time["invoice_count"] + report.average_OCR_time["imei"]*report.average_OCR_time["imei_count"])/(report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) if (report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) > 0 else None report.average_OCR_time["avg"] = (report.average_OCR_time["invoice"]*report.average_OCR_time["invoice_count"] + report.average_OCR_time["imei"]*report.average_OCR_time["imei_count"])/(report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) if (report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) > 0 else None
report.number_imei_transaction = transaction_att.get("imei", 0) report.number_imei_transaction = transaction_att.get("imei", 0)
@ -271,6 +273,8 @@ def create_accuracy_report(report_id, **kwargs):
report.average_OCR_time = {"invoice": time_cost["invoice"](), "imei": time_cost["imei"](), report.average_OCR_time = {"invoice": time_cost["invoice"](), "imei": time_cost["imei"](),
"invoice_count": time_cost["invoice"].count, "imei_count": time_cost["imei"].count} "invoice_count": time_cost["invoice"].count, "imei_count": time_cost["imei"].count}
report.average_OCR_time["invoice"] = 0 if report.average_OCR_time["invoice"] is None else report.average_OCR_time["invoice"]
report.average_OCR_time["imei"] = 0 if report.average_OCR_time["imei"] is None else report.average_OCR_time["imei"]
report.average_OCR_time["avg"] = (report.average_OCR_time["invoice"]*report.average_OCR_time["invoice_count"] + report.average_OCR_time["imei"]*report.average_OCR_time["imei_count"])/( report.average_OCR_time["avg"] = (report.average_OCR_time["invoice"]*report.average_OCR_time["invoice_count"] + report.average_OCR_time["imei"]*report.average_OCR_time["imei_count"])/(
report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) if (report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) > 0 else None report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) if (report.average_OCR_time["imei_count"] + report.average_OCR_time["invoice_count"]) > 0 else None
report.number_imei_transaction = transaction_att.get("imei", 0) report.number_imei_transaction = transaction_att.get("imei", 0)

View File

@ -101,8 +101,8 @@ class Command(BaseCommand):
request.is_reviewed = False request.is_reviewed = False
request.save() request.save()
image.predict_result = _predict_result image.predict_result = _predict_result
image.feedback_result = _feedback_result # image.feedback_result = _feedback_result
image.reviewed_result = _reviewed_result # image.reviewed_result = _reviewed_result
image.save() image.save()
except Exception as e: except Exception as e:
self.stdout.write(self.style.ERROR(f"Request: {request.request_id} failed with {e}")) self.stdout.write(self.style.ERROR(f"Request: {request.request_id} failed with {e}"))

View File

@ -0,0 +1,73 @@
# myapp/management/commands/mycustomcommand.py
from django.core.management.base import BaseCommand
from tqdm import tqdm
from fwd_api.models import SubscriptionRequestFile, SubscriptionRequest
from fwd_api.exception.exceptions import InvalidException
from fwd_api.utils.accuracy import predict_result_to_ready
import traceback
import copy
from django.utils import timezone
class Command(BaseCommand):
help = 'Move predict result to image level'
def add_arguments(self, parser):
# Add your command-line arguments here
parser.add_argument('start', type=str, help='start date, sample: 2023-01-02T00:00:00+0700')
parser.add_argument('end', type=str, help='end date, sample: 2023-01-03T00:00:00+0700')
def process_request(self, request):
if len(request.request_id.split(".")[0].split("_")) < 2:
return
images = SubscriptionRequestFile.objects.filter(request=request)
time_cost = {"imei": [], "invoice": [], "all": []}
if request.ai_inference_profile is None:
time_cost["imei"] = [-1 for _ in range(len(images))]
time_cost["invoice"] = [-1]
time_cost["all"] = [-1]
else:
for k, v in request.ai_inference_profile.items():
time_cost[k.split("_")[0]].append(v["inference"][1][0] - v["inference"][0] + (v["postprocess"][1]-v["postprocess"][0]))
for i, image in enumerate(images):
try:
image.index_in_request = int(image.file_name.split(".")[0].split("_")[-1]) if len(image.file_name.split(".")[0].split("_")) > 4 else 0
image.doc_type = image.file_name.split(".")[0].split("_")[1] if len(image.file_name.split(".")[0].split("_")) > 4 else "all"
image.processing_time = time_cost[image.doc_type][image.index_in_request]
if not request.predict_result:
self.stdout.write(self.style.WARNING(f"Key predict_result not found in {request.request_id}"))
return
if request.predict_result.get("status", 200) != 200:
self.stdout.write(self.style.WARNING(f"Failed request: {request.request_id}"))
return
_predict_result = copy.deepcopy(predict_result_to_ready(request.predict_result))
if image.doc_type == "invoice":
_predict_result["imei_number"] = []
else:
_predict_result = {"retailername": None, "sold_to_party": None, "purchase_date": [], "imei_number": [_predict_result["imei_number"][image.index_in_request]]}
image.predict_result = _predict_result
image.save()
except Exception as e:
self.stdout.write(self.style.ERROR(f"Request: {request.request_id} failed with {e}"))
print(traceback.format_exc())
continue
def handle(self, *args, **options):
start = options['start']
end = options['end']
if start or end:
try:
start_date = timezone.datetime.strptime(start, '%Y-%m-%dT%H:%M:%S%z')
end_date = timezone.datetime.strptime(end, '%Y-%m-%dT%H:%M:%S%z')
except Exception as e:
print(f"[INFO]: start: {start}")
print(f"[INFO]: end: {end}")
raise InvalidException(excArgs="Date format")
subcription_iter = SubscriptionRequest.objects.filter(created_at__range=(start_date, end_date))
else:
subcription_iter = SubscriptionRequest.objects.all()
for request in tqdm(subcription_iter.iterator()):
self.process_request(request)
self.stdout.write(self.style.SUCCESS('Sample Django management command executed successfully!'))

View File

@ -41,7 +41,8 @@ class ReportAccumulateByRequest:
'imei': IterAvg(), 'imei': IterAvg(),
'purchase_date': IterAvg(), 'purchase_date': IterAvg(),
'retailer_name': IterAvg(), 'retailer_name': IterAvg(),
'sold_to_party': IterAvg() 'sold_to_party': IterAvg(),
'invoice_no': IterAvg(),
}, },
'average_processing_time': { 'average_processing_time': {
'imei': IterAvg(), 'imei': IterAvg(),
@ -57,13 +58,15 @@ class ReportAccumulateByRequest:
'imei_number': IterAvg(), 'imei_number': IterAvg(),
'purchase_date': IterAvg(), 'purchase_date': IterAvg(),
'retailername': IterAvg(), 'retailername': IterAvg(),
'sold_to_party': IterAvg() 'sold_to_party': IterAvg(),
'invoice_no': IterAvg()
}, },
'reviewed_accuracy': { 'reviewed_accuracy': {
'imei_number': IterAvg(), 'imei_number': IterAvg(),
'purchase_date': IterAvg(), 'purchase_date': IterAvg(),
'retailername': IterAvg(), 'retailername': IterAvg(),
'sold_to_party': IterAvg() 'sold_to_party': IterAvg(),
'invoice_no': IterAvg()
}, },
'num_request': 0, 'num_request': 0,
"review_progress": [] "review_progress": []
@ -81,10 +84,11 @@ class ReportAccumulateByRequest:
'bad_percent': 0 'bad_percent': 0
}, },
'average_accuracy_rate': { 'average_accuracy_rate': {
'imei': IterAvg(), 'imei_number': IterAvg(),
'purchase_date': IterAvg(), 'purchase_date': IterAvg(),
'retailer_name': IterAvg(), 'retailer_name': IterAvg(),
'sold_to_party': IterAvg() 'sold_to_party': IterAvg(),
'invoice_no': IterAvg()
}, },
'average_processing_time': { 'average_processing_time': {
'imei': IterAvg(), 'imei': IterAvg(),
@ -100,13 +104,15 @@ class ReportAccumulateByRequest:
'imei_number': IterAvg(), 'imei_number': IterAvg(),
'purchase_date': IterAvg(), 'purchase_date': IterAvg(),
'retailername': IterAvg(), 'retailername': IterAvg(),
'sold_to_party': IterAvg() 'sold_to_party': IterAvg(),
'invoice_no': IterAvg()
}, },
'reviewed_accuracy': { 'reviewed_accuracy': {
'imei_number': IterAvg(), 'imei_number': IterAvg(),
'purchase_date': IterAvg(), 'purchase_date': IterAvg(),
'retailername': IterAvg(), 'retailername': IterAvg(),
'sold_to_party': IterAvg() 'sold_to_party': IterAvg(),
'invoice_no': IterAvg()
}, },
"report_files": [], "report_files": [],
"num_request": 0, "num_request": 0,
@ -127,20 +133,12 @@ class ReportAccumulateByRequest:
total["num_imei"] += 1 if doc_type == "imei" else 0 total["num_imei"] += 1 if doc_type == "imei" else 0
total["num_invoice"] += 1 if doc_type == "invoice" else 0 total["num_invoice"] += 1 if doc_type == "invoice" else 0
for key in settings.FIELD:
if sum([len(report_file.reviewed_accuracy[x]) for x in report_file.reviewed_accuracy.keys() if "_count" not in x]) > 0 : if sum([len(report_file.reviewed_accuracy[x]) for x in report_file.reviewed_accuracy.keys() if "_count" not in x]) > 0 :
total["average_accuracy_rate"]["imei"].add(report_file.reviewed_accuracy.get("imei_number", [])) total["average_accuracy_rate"][key].add(report_file.reviewed_accuracy.get(key, []))
total["average_accuracy_rate"]["purchase_date"].add(report_file.reviewed_accuracy.get("purchase_date", []))
total["average_accuracy_rate"]["retailer_name"].add(report_file.reviewed_accuracy.get("retailername", []))
total["average_accuracy_rate"]["sold_to_party"].add(report_file.reviewed_accuracy.get("sold_to_party", []))
elif sum([len(report_file.feedback_accuracy[x]) for x in report_file.feedback_accuracy.keys() if "_count" not in x]) > 0: elif sum([len(report_file.feedback_accuracy[x]) for x in report_file.feedback_accuracy.keys() if "_count" not in x]) > 0:
total["average_accuracy_rate"]["imei"].add(report_file.feedback_accuracy.get("imei_number", [])) total["average_accuracy_rate"][key].add(report_file.feedback_accuracy.get(key, []))
total["average_accuracy_rate"]["purchase_date"].add(report_file.feedback_accuracy.get("purchase_date", []))
total["average_accuracy_rate"]["retailer_name"].add(report_file.feedback_accuracy.get("retailername", []))
total["average_accuracy_rate"]["sold_to_party"].add(report_file.feedback_accuracy.get("sold_to_party", []))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
total["feedback_accuracy"][key].add(report_file.feedback_accuracy.get(key, [])) total["feedback_accuracy"][key].add(report_file.feedback_accuracy.get(key, []))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
total["reviewed_accuracy"][key].add(report_file.reviewed_accuracy.get(key, [])) total["reviewed_accuracy"][key].add(report_file.reviewed_accuracy.get(key, []))
if not total["average_processing_time"].get(report_file.doc_type, None): if not total["average_processing_time"].get(report_file.doc_type, None):
@ -174,20 +172,12 @@ class ReportAccumulateByRequest:
day_data["num_invoice"] += 1 if doc_type == "invoice" else 0 day_data["num_invoice"] += 1 if doc_type == "invoice" else 0
day_data["report_files"].append(report_file) day_data["report_files"].append(report_file)
for key in settings.FIELD:
if sum([len(report_file.reviewed_accuracy[x]) for x in report_file.reviewed_accuracy.keys() if "_count" not in x]) > 0: if sum([len(report_file.reviewed_accuracy[x]) for x in report_file.reviewed_accuracy.keys() if "_count" not in x]) > 0:
day_data["average_accuracy_rate"]["imei"].add(report_file.reviewed_accuracy.get("imei_number", [])) day_data["average_accuracy_rate"][key].add(report_file.reviewed_accuracy.get(key, []))
day_data["average_accuracy_rate"]["purchase_date"].add(report_file.reviewed_accuracy.get("purchase_date", []))
day_data["average_accuracy_rate"]["retailer_name"].add(report_file.reviewed_accuracy.get("retailername", []))
day_data["average_accuracy_rate"]["sold_to_party"].add(report_file.reviewed_accuracy.get("sold_to_party", []))
elif sum([len(report_file.feedback_accuracy[x]) for x in report_file.feedback_accuracy.keys() if "_count" not in x]) > 0: elif sum([len(report_file.feedback_accuracy[x]) for x in report_file.feedback_accuracy.keys() if "_count" not in x]) > 0:
day_data["average_accuracy_rate"]["imei"].add(report_file.feedback_accuracy.get("imei_number", [])) day_data["average_accuracy_rate"][key].add(report_file.feedback_accuracy.get(key, []))
day_data["average_accuracy_rate"]["purchase_date"].add(report_file.feedback_accuracy.get("purchase_date", []))
day_data["average_accuracy_rate"]["retailer_name"].add(report_file.feedback_accuracy.get("retailername", []))
day_data["average_accuracy_rate"]["sold_to_party"].add(report_file.feedback_accuracy.get("sold_to_party", []))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
day_data["feedback_accuracy"][key].add(report_file.feedback_accuracy.get(key, [])) day_data["feedback_accuracy"][key].add(report_file.feedback_accuracy.get(key, []))
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]:
day_data["reviewed_accuracy"][key].add(report_file.reviewed_accuracy.get(key, [])) day_data["reviewed_accuracy"][key].add(report_file.reviewed_accuracy.get(key, []))
if not day_data["average_processing_time"].get(report_file.doc_type, None): if not day_data["average_processing_time"].get(report_file.doc_type, None):
@ -264,7 +254,7 @@ class ReportAccumulateByRequest:
"reviewed_accuracy": {}} "reviewed_accuracy": {}}
for acc_type in ["feedback_accuracy", "reviewed_accuracy"]: for acc_type in ["feedback_accuracy", "reviewed_accuracy"]:
avg_acc = IterAvg() avg_acc = IterAvg()
for key in ["imei_number", "purchase_date", "retailername", "sold_to_party"]: for key in settings.FIELD:
acumulated_acc[acc_type][key] = self.data[month][1][day][acc_type][key]() acumulated_acc[acc_type][key] = self.data[month][1][day][acc_type][key]()
acumulated_acc[acc_type][key+"_count"] = self.data[month][1][day][acc_type][key].count acumulated_acc[acc_type][key+"_count"] = self.data[month][1][day][acc_type][key].count
avg_acc.add_avg(acumulated_acc[acc_type][key], acumulated_acc[acc_type][key+"_count"]) avg_acc.add_avg(acumulated_acc[acc_type][key], acumulated_acc[acc_type][key+"_count"])
@ -308,21 +298,13 @@ class ReportAccumulateByRequest:
for day in _data[month][1].keys(): for day in _data[month][1].keys():
num_transaction_imei += _data[month][1][day]["usage"].get("imei", 0) num_transaction_imei += _data[month][1][day]["usage"].get("imei", 0)
num_transaction_invoice += _data[month][1][day]["usage"].get("invoice", 0) num_transaction_invoice += _data[month][1][day]["usage"].get("invoice", 0)
_data[month][1][day]["average_accuracy_rate"]["imei"] = _data[month][1][day]["average_accuracy_rate"]["imei"]()
_data[month][1][day]["average_accuracy_rate"]["purchase_date"] = _data[month][1][day]["average_accuracy_rate"]["purchase_date"]()
_data[month][1][day]["average_accuracy_rate"]["retailer_name"] = _data[month][1][day]["average_accuracy_rate"]["retailer_name"]()
_data[month][1][day]["average_accuracy_rate"]["sold_to_party"] = _data[month][1][day]["average_accuracy_rate"]["sold_to_party"]()
for key in _data[month][1][day]["average_processing_time"].keys(): for key in _data[month][1][day]["average_processing_time"].keys():
_data[month][1][day]["average_processing_time"][key] = _data[month][1][day]["average_processing_time"][key]() _data[month][1][day]["average_processing_time"][key] = _data[month][1][day]["average_processing_time"][key]()
_data[month][1][day]["feedback_accuracy"]["imei_number"] = _data[month][1][day]["feedback_accuracy"]["imei_number"]() for key in settings.FIELD:
_data[month][1][day]["feedback_accuracy"]["purchase_date"] = _data[month][1][day]["feedback_accuracy"]["purchase_date"]() _data[month][1][day]["average_accuracy_rate"][key] = _data[month][1][day]["average_accuracy_rate"][key]()
_data[month][1][day]["feedback_accuracy"]["retailername"] = _data[month][1][day]["feedback_accuracy"]["retailername"]() for accuracy_type in ["feedback_accuracy", key]:
_data[month][1][day]["feedback_accuracy"]["sold_to_party"] = _data[month][1][day]["feedback_accuracy"]["sold_to_party"]() _data[month][1][day][accuracy_type]["imei_number"] = _data[month][1][day]["feedback_accuracy"]["imei_number"]()
_data[month][1][day]["reviewed_accuracy"]["imei_number"] = _data[month][1][day]["reviewed_accuracy"]["imei_number"]()
_data[month][1][day]["reviewed_accuracy"]["purchase_date"] = _data[month][1][day]["reviewed_accuracy"]["purchase_date"]()
_data[month][1][day]["reviewed_accuracy"]["retailername"] = _data[month][1][day]["reviewed_accuracy"]["retailername"]()
_data[month][1][day]["reviewed_accuracy"]["sold_to_party"] = _data[month][1][day]["reviewed_accuracy"]["sold_to_party"]()
_data[month][1][day]["review_progress"] = _data[month][1][day]["review_progress"].count(1)/(_data[month][1][day]["review_progress"].count(0)+ _data[month][1][day]["review_progress"].count(1)) if (_data[month][1][day]["review_progress"].count(0)+ _data[month][1][day]["review_progress"].count(1)) >0 else 0 _data[month][1][day]["review_progress"] = _data[month][1][day]["review_progress"].count(1)/(_data[month][1][day]["review_progress"].count(0)+ _data[month][1][day]["review_progress"].count(1)) if (_data[month][1][day]["review_progress"].count(0)+ _data[month][1][day]["review_progress"].count(1)) >0 else 0
_data[month][1][day].pop("report_files") _data[month][1][day].pop("report_files")
@ -332,23 +314,13 @@ class ReportAccumulateByRequest:
_data[month][0]["usage"]["imei"] = num_transaction_imei _data[month][0]["usage"]["imei"] = num_transaction_imei
_data[month][0]["usage"]["invoice"] = num_transaction_invoice _data[month][0]["usage"]["invoice"] = num_transaction_invoice
_data[month][0]["usage"]["total_images"] = num_transaction_invoice + num_transaction_imei _data[month][0]["usage"]["total_images"] = num_transaction_invoice + num_transaction_imei
_data[month][0]["average_accuracy_rate"]["imei"] = _data[month][0]["average_accuracy_rate"]["imei"]()
_data[month][0]["average_accuracy_rate"]["purchase_date"] = _data[month][0]["average_accuracy_rate"]["purchase_date"]()
_data[month][0]["average_accuracy_rate"]["retailer_name"] = _data[month][0]["average_accuracy_rate"]["retailer_name"]()
_data[month][0]["average_accuracy_rate"]["sold_to_party"] = _data[month][0]["average_accuracy_rate"]["sold_to_party"]()
for key in _data[month][0]["average_processing_time"].keys(): for key in _data[month][0]["average_processing_time"].keys():
_data[month][0]["average_processing_time"][key] = _data[month][0]["average_processing_time"][key]() _data[month][0]["average_processing_time"][key] = _data[month][0]["average_processing_time"][key]()
for key in settings.FIELD:
_data[month][0]["feedback_accuracy"]["imei_number"] = _data[month][0]["feedback_accuracy"]["imei_number"]() _data[month][0]["average_accuracy_rate"][key] = _data[month][0]["average_accuracy_rate"][key]()
_data[month][0]["feedback_accuracy"]["purchase_date"] = _data[month][0]["feedback_accuracy"]["purchase_date"]() for accuracy_type in ["feedback_accuracy", key]:
_data[month][0]["feedback_accuracy"]["retailername"] = _data[month][0]["feedback_accuracy"]["retailername"]() _data[month][0][accuracy_type][key] = _data[month][0][accuracy_type][key]()
_data[month][0]["feedback_accuracy"]["sold_to_party"] = _data[month][0]["feedback_accuracy"]["sold_to_party"]()
_data[month][0]["reviewed_accuracy"]["imei_number"] = _data[month][0]["reviewed_accuracy"]["imei_number"]()
_data[month][0]["reviewed_accuracy"]["purchase_date"] = _data[month][0]["reviewed_accuracy"]["purchase_date"]()
_data[month][0]["reviewed_accuracy"]["retailername"] = _data[month][0]["reviewed_accuracy"]["retailername"]()
_data[month][0]["reviewed_accuracy"]["sold_to_party"] = _data[month][0]["reviewed_accuracy"]["sold_to_party"]()
_data[month][0]["review_progress"] = _data[month][0]["review_progress"].count(1)/(_data[month][0]["review_progress"].count(0)+ _data[month][0]["review_progress"].count(1)) if (_data[month][0]["review_progress"].count(0)+ _data[month][0]["review_progress"].count(1)) >0 else 0 _data[month][0]["review_progress"] = _data[month][0]["review_progress"].count(1)/(_data[month][0]["review_progress"].count(0)+ _data[month][0]["review_progress"].count(1)) if (_data[month][0]["review_progress"].count(0)+ _data[month][0]["review_progress"].count(1)) >0 else 0
return _data return _data
class MonthReportAccumulate: class MonthReportAccumulate:
@ -553,6 +525,7 @@ def first_of_list(the_list):
def extract_report_detail_list(report_detail_list, lower=False, in_percent=True): def extract_report_detail_list(report_detail_list, lower=False, in_percent=True):
data = [] data = []
for report_file in report_detail_list: for report_file in report_detail_list:
# FIXME: #79 Fill None with value
data.append({ data.append({
"Subs": report_file.subsidiary, "Subs": report_file.subsidiary,
"Request ID": report_file.correspond_request_id, "Request ID": report_file.correspond_request_id,
@ -560,12 +533,19 @@ def extract_report_detail_list(report_detail_list, lower=False, in_percent=True)
"Image type": report_file.doc_type, "Image type": report_file.doc_type,
"IMEI_user submitted": first_of_list(report_file.feedback_result.get("imei_number", [None])), "IMEI_user submitted": first_of_list(report_file.feedback_result.get("imei_number", [None])),
"IMEI_OCR retrieved": first_of_list(report_file.predict_result.get("imei_number", [None])), "IMEI_OCR retrieved": first_of_list(report_file.predict_result.get("imei_number", [None])),
"IMEI Revised": None,
"IMEI1 Accuracy": first_of_list(report_file.feedback_accuracy.get("imei_number", [None])), "IMEI1 Accuracy": first_of_list(report_file.feedback_accuracy.get("imei_number", [None])),
"Invoice_Number_User": None,
"Invoice_Number_OCR": None,
"Invoice_Number Revised": None,
"Invoice_Number_Accuracy": None,
"Invoice_Purchase Date_Consumer": report_file.feedback_result.get("purchase_date", None), "Invoice_Purchase Date_Consumer": report_file.feedback_result.get("purchase_date", None),
"Invoice_Purchase Date_OCR": report_file.predict_result.get("purchase_date", []), "Invoice_Purchase Date_OCR": report_file.predict_result.get("purchase_date", []),
"Invoice_Purchase Date Revised": None,
"Invoice_Purchase Date Accuracy": first_of_list(report_file.feedback_accuracy.get("purchase_date", [None])), "Invoice_Purchase Date Accuracy": first_of_list(report_file.feedback_accuracy.get("purchase_date", [None])),
"Invoice_Retailer_Consumer": report_file.feedback_result.get("retailername", None), "Invoice_Retailer_Consumer": report_file.feedback_result.get("retailername", None),
"Invoice_Retailer_OCR": report_file.predict_result.get("retailername", None), "Invoice_Retailer_OCR": report_file.predict_result.get("retailername", None),
"Invoice_Purchase Date Revised": None,
"Invoice_Retailer Accuracy": first_of_list(report_file.feedback_accuracy.get("retailername", [None])), "Invoice_Retailer Accuracy": first_of_list(report_file.feedback_accuracy.get("retailername", [None])),
"OCR Image Accuracy": report_file.acc, "OCR Image Accuracy": report_file.acc,
"OCR Image Speed (seconds)": report_file.time_cost, "OCR Image Speed (seconds)": report_file.time_cost,
@ -848,6 +828,12 @@ def create_billing_data(subscription_requests):
return billing_data return billing_data
def calculate_a_request(report, request): def calculate_a_request(report, request):
def review_status_map(input):
review_status = {-1: "Not Required",
0: "No",
1: "Yes"}
return review_status.get(input, "N/A")
request_att = {"acc": {"feedback": {"imei_number": [], request_att = {"acc": {"feedback": {"imei_number": [],
"purchase_date": [], "purchase_date": [],
"retailername": [], "retailername": [],
@ -905,8 +891,8 @@ def calculate_a_request(report, request):
if len(att["normalized_data"]["reviewed"].get("purchase_date", [])) > 0: if len(att["normalized_data"]["reviewed"].get("purchase_date", [])) > 0:
image.predict_result["purchase_date"] = [att["normalized_data"]["reviewed"]["purchase_date"][i][0] for i in range(len(att["normalized_data"]["reviewed"]["purchase_date"]))] image.predict_result["purchase_date"] = [att["normalized_data"]["reviewed"]["purchase_date"][i][0] for i in range(len(att["normalized_data"]["reviewed"]["purchase_date"]))]
image.reviewed_result["purchase_date"] = att["normalized_data"]["reviewed"]["purchase_date"][rv_max_indexes["purchase_date"]][1] image.reviewed_result["purchase_date"] = att["normalized_data"]["reviewed"]["purchase_date"][rv_max_indexes["purchase_date"]][1]
if request.is_reviewed: # if request.is_reviewed:
att["is_reviewed"] = 1 # att["is_reviewed"] = 1
request_att["is_reviewed"].append(att["is_reviewed"]) request_att["is_reviewed"].append(att["is_reviewed"])
new_report_file = ReportFile(report=report, new_report_file = ReportFile(report=report,
subsidiary=_sub, subsidiary=_sub,
@ -920,7 +906,7 @@ def calculate_a_request(report, request):
reviewed_accuracy=att["acc"]["reviewed"], reviewed_accuracy=att["acc"]["reviewed"],
acc=att["avg_acc"], acc=att["avg_acc"],
is_bad_image=att["is_bad_image"], is_bad_image=att["is_bad_image"],
is_reviewed= "Yes" if request.is_reviewed else "No", is_reviewed= review_status_map(att["is_reviewed"]),
time_cost=image.processing_time, time_cost=image.processing_time,
bad_image_reason=image.reason, bad_image_reason=image.reason,
counter_measures=image.counter_measures, counter_measures=image.counter_measures,
@ -1014,6 +1000,10 @@ def calculate_subcription_file(subcription_request_file):
avg_acc = avg_reviewed avg_acc = avg_reviewed
att["is_reviewed"] = 1 att["is_reviewed"] = 1
# Little trick to overcome issue caused by misleading manually review process
if subcription_request_file.reason or subcription_request_file.counter_measures:
att["is_reviewed"] = 1
att["avg_acc"] = avg_acc att["avg_acc"] = avg_acc
if avg_acc < settings.BAD_THRESHOLD: if avg_acc < settings.BAD_THRESHOLD:
att["is_bad_image"] = True att["is_bad_image"] = True