commit
0665d707a5
2
.gitignore
vendored
2
.gitignore
vendored
@ -11,7 +11,7 @@ backup/
|
|||||||
*.sqlite3
|
*.sqlite3
|
||||||
*.log
|
*.log
|
||||||
__pycache__
|
__pycache__
|
||||||
migrations/
|
# migrations/
|
||||||
test/
|
test/
|
||||||
._git/
|
._git/
|
||||||
sdsvkvu_/
|
sdsvkvu_/
|
||||||
|
6
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/.gitignore
vendored
Normal file
6
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
# Builds
|
||||||
|
*.egg-info
|
||||||
|
__pycache__
|
||||||
|
|
||||||
|
# Checkpoint
|
||||||
|
hub
|
674
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/LICENSE
vendored
Normal file
674
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/LICENSE
vendored
Normal file
@ -0,0 +1,674 @@
|
|||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
76
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/README.md
vendored
Normal file
76
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/README.md
vendored
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
## Introduction
|
||||||
|
This repo serve as source code storage for the Standalone YoloX Detection packages.
|
||||||
|
Installing this package requires 2 additional packages: PyTorch and MMCV.
|
||||||
|
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
```shell
|
||||||
|
conda create -n sdsvtd-env python=3.8
|
||||||
|
conda activate sdsvtd-env
|
||||||
|
conda install pytorch torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
|
||||||
|
pip install mmcv-full
|
||||||
|
git clone https://github.com/moewiee/sdsvtd.git
|
||||||
|
cd sdsvtd
|
||||||
|
pip install -v -e .
|
||||||
|
```
|
||||||
|
|
||||||
|
## Basic Usage
|
||||||
|
```python
|
||||||
|
from sdsvtd import StandaloneYOLOXRunner
|
||||||
|
runner = StandaloneYOLOXRunner(version='yolox-s-general-text-pretrain-20221226', device='cpu')
|
||||||
|
```
|
||||||
|
|
||||||
|
The `version` parameter accepts version names declared in `sdsvtd.factory.online_model_factory` or a local path such as `$DIR\model.pth`. To check for available versions in the hub, run:
|
||||||
|
```python
|
||||||
|
import sdsvtd
|
||||||
|
print(sdsvtd.__hub_available_versions__)
|
||||||
|
```
|
||||||
|
|
||||||
|
Naturally, a `StandaloneYOLOXRunner` instance assumes the input to be an instance of `np.ndarray` or an instance of `str` (batch inferece is not supported), for examples:
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
from sdsvtd import StandaloneYOLOXRunner
|
||||||
|
runner = StandaloneYOLOXRunner(version='yolox-s-general-text-pretrain-20221226', device='cpu')
|
||||||
|
|
||||||
|
dummy_input = np.ndarray(500, 500, 3)
|
||||||
|
result = runner(dummy_input)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Note:** Output of `StandaloneYOLOXRunner` instance will be in format `List[np.ndarray]` with each list element corresponds to one class. Each `np.ndarray` will be a 5-d vector `[x1 y1 x2 y2 confident]` with coordinates rescaled to fit the original image size.
|
||||||
|
|
||||||
|
**AutoRotation:**
|
||||||
|
From version 0.1.0, `sdsvtd` support *AutoRotation* feature which accept a `np.ndarray/str` as input and return an straight rotated image (only available rotation degrees are 90, 180 and 270) of type `np.ndarray` and its bounding boxes of type `List[np.ndarray]`. Usage:
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
from sdsvtd import StandaloneYOLOXRunner
|
||||||
|
runner = StandaloneYOLOXRunner(version='yolox-s-general-text-pretrain-20221226', device='cpu', auto_rotate=True)
|
||||||
|
|
||||||
|
rotated_image, result = runner(cv2.imread('path-to-image')) # or
|
||||||
|
rotated_image, result = runner(np.ndarray)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Version Changelog
|
||||||
|
* **[0.0.1]**
|
||||||
|
Initial version with specified features.
|
||||||
|
|
||||||
|
* **[0.0.2]**
|
||||||
|
Update more versions in model hub.
|
||||||
|
|
||||||
|
* **[0.0.3]**
|
||||||
|
Update feature to specify running device while initialize runner. [Issue](https://github.com/moewiee/sdsvtd/issues/2)
|
||||||
|
|
||||||
|
* **[0.0.4]**
|
||||||
|
Fix a minor bugs when existing hub/local version != current hub/local version.
|
||||||
|
|
||||||
|
* **[0.0.5]**
|
||||||
|
Update model hub with handwritten text line detection version.
|
||||||
|
|
||||||
|
* **[0.1.0]**
|
||||||
|
Update new feature: Auto Rotation.
|
||||||
|
|
||||||
|
* **[0.1.1]**
|
||||||
|
Fix a bug in API inference class where return double result with auto_rotate=False.
|
||||||
|
|
||||||
|
* **[0.1.2]**
|
||||||
|
Fix a bug in rotate feature where rotator_version was ignored.
|
||||||
|
|
2
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/requirements.txt
vendored
Normal file
2
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/requirements.txt
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
torch
|
||||||
|
mmcv-full
|
@ -0,0 +1,3 @@
|
|||||||
|
from .api import StandaloneYOLOXRunner
|
||||||
|
from .version import __version__
|
||||||
|
from .factory import __hub_available_versions__
|
35
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/api.py
vendored
Normal file
35
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/api.py
vendored
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
from .model import SingleStageDetector, AutoRotateDetector
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class StandaloneYOLOXRunner:
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
version,
|
||||||
|
device,
|
||||||
|
auto_rotate=False,
|
||||||
|
rotator_version=None):
|
||||||
|
self.model = SingleStageDetector(version,
|
||||||
|
device)
|
||||||
|
self.auto_rotate = auto_rotate
|
||||||
|
if self.auto_rotate:
|
||||||
|
if rotator_version is None:
|
||||||
|
rotator_version = version
|
||||||
|
self.rotator = AutoRotateDetector(rotator_version,
|
||||||
|
device)
|
||||||
|
|
||||||
|
self.warmup_()
|
||||||
|
|
||||||
|
def warmup_(self):
|
||||||
|
''' Call on dummpy input to warm up instance '''
|
||||||
|
x = np.ndarray((1280, 1280, 3)).astype(np.uint8)
|
||||||
|
self.model(x)
|
||||||
|
if self.auto_rotate:
|
||||||
|
self.rotator(x)
|
||||||
|
|
||||||
|
|
||||||
|
def __call__(self, img):
|
||||||
|
if self.auto_rotate:
|
||||||
|
img = self.rotator(img)
|
||||||
|
result = self.model(img)
|
||||||
|
|
||||||
|
return result if not self.auto_rotate else (img, result)
|
395
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/backbone.py
vendored
Normal file
395
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/backbone.py
vendored
Normal file
@ -0,0 +1,395 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from mmcv.cnn import ConvModule
|
||||||
|
from torch.nn.modules.batchnorm import _BatchNorm
|
||||||
|
|
||||||
|
|
||||||
|
class DarknetBottleneck(nn.Module):
|
||||||
|
"""The basic bottleneck block used in Darknet.
|
||||||
|
|
||||||
|
Each ResBlock consists of two ConvModules and the input is added to the
|
||||||
|
final output. Each ConvModule is composed of Conv, BN, and LeakyReLU.
|
||||||
|
The first convLayer has filter size of 1x1 and the second one has the
|
||||||
|
filter size of 3x3.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): The input channels of this Module.
|
||||||
|
out_channels (int): The output channels of this Module.
|
||||||
|
expansion (int): The kernel size of the convolution. Default: 0.5
|
||||||
|
add_identity (bool): Whether to add identity to the out.
|
||||||
|
Default: True
|
||||||
|
use_depthwise (bool): Whether to use depthwise separable convolution.
|
||||||
|
Default: False
|
||||||
|
conv_cfg (dict): Config dict for convolution layer. Default: None,
|
||||||
|
which means using conv2d.
|
||||||
|
norm_cfg (dict): Config dict for normalization layer.
|
||||||
|
Default: dict(type='BN').
|
||||||
|
act_cfg (dict): Config dict for activation layer.
|
||||||
|
Default: dict(type='Swish').
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
expansion=0.5,
|
||||||
|
add_identity=True,
|
||||||
|
use_depthwise=False,
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||||
|
act_cfg=dict(type='Swish')):
|
||||||
|
super().__init__()
|
||||||
|
hidden_channels = int(out_channels * expansion)
|
||||||
|
self.conv1 = ConvModule(
|
||||||
|
in_channels,
|
||||||
|
hidden_channels,
|
||||||
|
1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
self.conv2 = ConvModule(
|
||||||
|
hidden_channels,
|
||||||
|
out_channels,
|
||||||
|
3,
|
||||||
|
stride=1,
|
||||||
|
padding=1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
self.add_identity = \
|
||||||
|
add_identity and in_channels == out_channels
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
identity = x
|
||||||
|
out = self.conv1(x)
|
||||||
|
out = self.conv2(out)
|
||||||
|
|
||||||
|
if self.add_identity:
|
||||||
|
return out + identity
|
||||||
|
else:
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class CSPLayer(nn.Module):
|
||||||
|
"""Cross Stage Partial Layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): The input channels of the CSP layer.
|
||||||
|
out_channels (int): The output channels of the CSP layer.
|
||||||
|
expand_ratio (float): Ratio to adjust the number of channels of the
|
||||||
|
hidden layer. Default: 0.5
|
||||||
|
num_blocks (int): Number of blocks. Default: 1
|
||||||
|
add_identity (bool): Whether to add identity in blocks.
|
||||||
|
Default: True
|
||||||
|
use_depthwise (bool): Whether to depthwise separable convolution in
|
||||||
|
blocks. Default: False
|
||||||
|
conv_cfg (dict, optional): Config dict for convolution layer.
|
||||||
|
Default: None, which means using conv2d.
|
||||||
|
norm_cfg (dict): Config dict for normalization layer.
|
||||||
|
Default: dict(type='BN')
|
||||||
|
act_cfg (dict): Config dict for activation layer.
|
||||||
|
Default: dict(type='Swish')
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
expand_ratio=0.5,
|
||||||
|
num_blocks=1,
|
||||||
|
add_identity=True,
|
||||||
|
use_depthwise=False,
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||||
|
act_cfg=dict(type='Swish')):
|
||||||
|
super().__init__()
|
||||||
|
mid_channels = int(out_channels * expand_ratio)
|
||||||
|
self.main_conv = ConvModule(
|
||||||
|
in_channels,
|
||||||
|
mid_channels,
|
||||||
|
1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
self.short_conv = ConvModule(
|
||||||
|
in_channels,
|
||||||
|
mid_channels,
|
||||||
|
1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
self.final_conv = ConvModule(
|
||||||
|
2 * mid_channels,
|
||||||
|
out_channels,
|
||||||
|
1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
|
||||||
|
self.blocks = nn.Sequential(*[
|
||||||
|
DarknetBottleneck(
|
||||||
|
mid_channels,
|
||||||
|
mid_channels,
|
||||||
|
1.0,
|
||||||
|
add_identity,
|
||||||
|
use_depthwise,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg) for _ in range(num_blocks)
|
||||||
|
])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x_short = self.short_conv(x)
|
||||||
|
|
||||||
|
x_main = self.main_conv(x)
|
||||||
|
x_main = self.blocks(x_main)
|
||||||
|
|
||||||
|
x_final = torch.cat((x_main, x_short), dim=1)
|
||||||
|
return self.final_conv(x_final)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class Focus(nn.Module):
|
||||||
|
"""Focus width and height information into channel space.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): The input channels of this Module.
|
||||||
|
out_channels (int): The output channels of this Module.
|
||||||
|
kernel_size (int): The kernel size of the convolution. Default: 1
|
||||||
|
stride (int): The stride of the convolution. Default: 1
|
||||||
|
conv_cfg (dict): Config dict for convolution layer. Default: None,
|
||||||
|
which means using conv2d.
|
||||||
|
norm_cfg (dict): Config dict for normalization layer.
|
||||||
|
Default: dict(type='BN', momentum=0.03, eps=0.001).
|
||||||
|
act_cfg (dict): Config dict for activation layer.
|
||||||
|
Default: dict(type='Swish').
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||||
|
act_cfg=dict(type='Swish')):
|
||||||
|
super().__init__()
|
||||||
|
self.conv = ConvModule(
|
||||||
|
in_channels * 4,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
stride,
|
||||||
|
padding=(kernel_size - 1) // 2,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# shape of x (b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||||
|
patch_top_left = x[..., ::2, ::2]
|
||||||
|
patch_top_right = x[..., ::2, 1::2]
|
||||||
|
patch_bot_left = x[..., 1::2, ::2]
|
||||||
|
patch_bot_right = x[..., 1::2, 1::2]
|
||||||
|
x = torch.cat(
|
||||||
|
(
|
||||||
|
patch_top_left,
|
||||||
|
patch_bot_left,
|
||||||
|
patch_top_right,
|
||||||
|
patch_bot_right,
|
||||||
|
),
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
|
||||||
|
class SPPBottleneck(nn.Module):
|
||||||
|
"""Spatial pyramid pooling layer used in YOLOv3-SPP.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): The input channels of this Module.
|
||||||
|
out_channels (int): The output channels of this Module.
|
||||||
|
kernel_sizes (tuple[int]): Sequential of kernel sizes of pooling
|
||||||
|
layers. Default: (5, 9, 13).
|
||||||
|
conv_cfg (dict): Config dict for convolution layer. Default: None,
|
||||||
|
which means using conv2d.
|
||||||
|
norm_cfg (dict): Config dict for normalization layer.
|
||||||
|
Default: dict(type='BN').
|
||||||
|
act_cfg (dict): Config dict for activation layer.
|
||||||
|
Default: dict(type='Swish').
|
||||||
|
init_cfg (dict or list[dict], optional): Initialization config dict.
|
||||||
|
Default: None.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_sizes=(5, 9, 13),
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||||
|
act_cfg=dict(type='Swish')):
|
||||||
|
super().__init__()
|
||||||
|
mid_channels = in_channels // 2
|
||||||
|
self.conv1 = ConvModule(
|
||||||
|
in_channels,
|
||||||
|
mid_channels,
|
||||||
|
1,
|
||||||
|
stride=1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
self.poolings = nn.ModuleList([
|
||||||
|
nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2)
|
||||||
|
for ks in kernel_sizes
|
||||||
|
])
|
||||||
|
conv2_channels = mid_channels * (len(kernel_sizes) + 1)
|
||||||
|
self.conv2 = ConvModule(
|
||||||
|
conv2_channels,
|
||||||
|
out_channels,
|
||||||
|
1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = torch.cat([x] + [pooling(x) for pooling in self.poolings], dim=1)
|
||||||
|
x = self.conv2(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class CSPDarknet(nn.Module):
|
||||||
|
"""CSP-Darknet backbone used in YOLOv5 and YOLOX.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
arch (str): Architecture of CSP-Darknet, from {P5, P6}.
|
||||||
|
Default: P5.
|
||||||
|
deepen_factor (float): Depth multiplier, multiply number of
|
||||||
|
blocks in CSP layer by this amount. Default: 1.0.
|
||||||
|
widen_factor (float): Width multiplier, multiply number of
|
||||||
|
channels in each layer by this amount. Default: 1.0.
|
||||||
|
out_indices (Sequence[int]): Output from which stages.
|
||||||
|
Default: (2, 3, 4).
|
||||||
|
frozen_stages (int): Stages to be frozen (stop grad and set eval
|
||||||
|
mode). -1 means not freezing any parameters. Default: -1.
|
||||||
|
use_depthwise (bool): Whether to use depthwise separable convolution.
|
||||||
|
Default: False.
|
||||||
|
arch_ovewrite(list): Overwrite default arch settings. Default: None.
|
||||||
|
spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP
|
||||||
|
layers. Default: (5, 9, 13).
|
||||||
|
conv_cfg (dict): Config dict for convolution layer. Default: None.
|
||||||
|
norm_cfg (dict): Dictionary to construct and config norm layer.
|
||||||
|
Default: dict(type='BN', requires_grad=True).
|
||||||
|
act_cfg (dict): Config dict for activation layer.
|
||||||
|
Default: dict(type='LeakyReLU', negative_slope=0.1).
|
||||||
|
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
||||||
|
freeze running stats (mean and var). Note: Effect on Batch Norm
|
||||||
|
and its variants only.
|
||||||
|
"""
|
||||||
|
# From left to right:
|
||||||
|
# in_channels, out_channels, num_blocks, add_identity, use_spp
|
||||||
|
arch_settings = {
|
||||||
|
'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False],
|
||||||
|
[256, 512, 9, True, False], [512, 1024, 3, False, True]],
|
||||||
|
'P6': [[64, 128, 3, True, False], [128, 256, 9, True, False],
|
||||||
|
[256, 512, 9, True, False], [512, 768, 3, True, False],
|
||||||
|
[768, 1024, 3, False, True]]
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
arch='P5',
|
||||||
|
deepen_factor=1.0,
|
||||||
|
widen_factor=1.0,
|
||||||
|
out_indices=(2, 3, 4),
|
||||||
|
frozen_stages=-1,
|
||||||
|
use_depthwise=False,
|
||||||
|
arch_ovewrite=None,
|
||||||
|
spp_kernal_sizes=(5, 9, 13),
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||||
|
act_cfg=dict(type='Swish'),
|
||||||
|
norm_eval=False):
|
||||||
|
super().__init__()
|
||||||
|
arch_setting = self.arch_settings[arch]
|
||||||
|
if arch_ovewrite:
|
||||||
|
arch_setting = arch_ovewrite
|
||||||
|
assert set(out_indices).issubset(
|
||||||
|
i for i in range(len(arch_setting) + 1))
|
||||||
|
if frozen_stages not in range(-1, len(arch_setting) + 1):
|
||||||
|
raise ValueError('frozen_stages must be in range(-1, '
|
||||||
|
'len(arch_setting) + 1). But received '
|
||||||
|
f'{frozen_stages}')
|
||||||
|
|
||||||
|
self.out_indices = out_indices
|
||||||
|
self.frozen_stages = frozen_stages
|
||||||
|
self.use_depthwise = use_depthwise
|
||||||
|
self.norm_eval = norm_eval
|
||||||
|
|
||||||
|
self.stem = Focus(
|
||||||
|
3,
|
||||||
|
int(arch_setting[0][0] * widen_factor),
|
||||||
|
kernel_size=3,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
self.layers = ['stem']
|
||||||
|
|
||||||
|
for i, (in_channels, out_channels, num_blocks, add_identity,
|
||||||
|
use_spp) in enumerate(arch_setting):
|
||||||
|
in_channels = int(in_channels * widen_factor)
|
||||||
|
out_channels = int(out_channels * widen_factor)
|
||||||
|
num_blocks = max(round(num_blocks * deepen_factor), 1)
|
||||||
|
stage = []
|
||||||
|
conv_layer = ConvModule(
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
3,
|
||||||
|
stride=2,
|
||||||
|
padding=1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
stage.append(conv_layer)
|
||||||
|
if use_spp:
|
||||||
|
spp = SPPBottleneck(
|
||||||
|
out_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_sizes=spp_kernal_sizes,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
stage.append(spp)
|
||||||
|
csp_layer = CSPLayer(
|
||||||
|
out_channels,
|
||||||
|
out_channels,
|
||||||
|
num_blocks=num_blocks,
|
||||||
|
add_identity=add_identity,
|
||||||
|
use_depthwise=use_depthwise,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg)
|
||||||
|
stage.append(csp_layer)
|
||||||
|
self.add_module(f'stage{i + 1}', nn.Sequential(*stage))
|
||||||
|
self.layers.append(f'stage{i + 1}')
|
||||||
|
|
||||||
|
def _freeze_stages(self):
|
||||||
|
if self.frozen_stages >= 0:
|
||||||
|
for i in range(self.frozen_stages + 1):
|
||||||
|
m = getattr(self, self.layers[i])
|
||||||
|
m.eval()
|
||||||
|
for param in m.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def train(self, mode=True):
|
||||||
|
super(CSPDarknet, self).train(mode)
|
||||||
|
self._freeze_stages()
|
||||||
|
if mode and self.norm_eval:
|
||||||
|
for m in self.modules():
|
||||||
|
if isinstance(m, _BatchNorm):
|
||||||
|
m.eval()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
outs = []
|
||||||
|
for i, layer_name in enumerate(self.layers):
|
||||||
|
layer = getattr(self, layer_name)
|
||||||
|
x = layer(x)
|
||||||
|
if i in self.out_indices:
|
||||||
|
outs.append(x)
|
||||||
|
return tuple(outs)
|
288
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/bbox_head.py
vendored
Normal file
288
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/bbox_head.py
vendored
Normal file
@ -0,0 +1,288 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from mmcv.cnn import ConvModule
|
||||||
|
from mmcv.ops.nms import batched_nms
|
||||||
|
from mmcv.runner import force_fp32
|
||||||
|
from functools import partial
|
||||||
|
from .priors import MlvlPointGenerator
|
||||||
|
|
||||||
|
|
||||||
|
def multi_apply(func, *args, **kwargs):
|
||||||
|
"""Apply function to a list of arguments.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
This function applies the ``func`` to multiple inputs and
|
||||||
|
map the multiple outputs of the ``func`` into different
|
||||||
|
list. Each list contains the same type of outputs corresponding
|
||||||
|
to different inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
func (Function): A function that will be applied to a list of
|
||||||
|
arguments
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple(list): A tuple containing multiple list, each list contains \
|
||||||
|
a kind of returned results by the function
|
||||||
|
"""
|
||||||
|
pfunc = partial(func, **kwargs) if kwargs else func
|
||||||
|
map_results = map(pfunc, *args)
|
||||||
|
return tuple(map(list, zip(*map_results)))
|
||||||
|
|
||||||
|
|
||||||
|
class YOLOXHead(nn.Module):
|
||||||
|
"""YOLOXHead head used in `YOLOX <https://arxiv.org/abs/2107.08430>`_.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_classes (int): Number of categories excluding the background
|
||||||
|
category.
|
||||||
|
in_channels (int): Number of channels in the input feature map.
|
||||||
|
feat_channels (int): Number of hidden channels in stacking convs.
|
||||||
|
Default: 256
|
||||||
|
stacked_convs (int): Number of stacking convs of the head.
|
||||||
|
Default: 2.
|
||||||
|
strides (tuple): Downsample factor of each feature map.
|
||||||
|
use_depthwise (bool): Whether to depthwise separable convolution in
|
||||||
|
blocks. Default: False
|
||||||
|
dcn_on_last_conv (bool): If true, use dcn in the last layer of
|
||||||
|
towers. Default: False.
|
||||||
|
conv_bias (bool | str): If specified as `auto`, it will be decided by
|
||||||
|
the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
|
||||||
|
None, otherwise False. Default: "auto".
|
||||||
|
conv_cfg (dict): Config dict for convolution layer. Default: None.
|
||||||
|
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
||||||
|
act_cfg (dict): Config dict for activation layer. Default: None.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
num_classes,
|
||||||
|
in_channels,
|
||||||
|
feat_channels=256,
|
||||||
|
stacked_convs=2,
|
||||||
|
strides=[8, 16, 32],
|
||||||
|
use_depthwise=False,
|
||||||
|
dcn_on_last_conv=False,
|
||||||
|
conv_bias='auto',
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||||
|
act_cfg=dict(type='Swish'),
|
||||||
|
nms_score_thr=0.3,
|
||||||
|
nms_iou_threshold=0.1):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.nms_config = dict(score_thr=nms_score_thr, nms=dict(iou_threshold=nms_iou_threshold))
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.cls_out_channels = num_classes
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.feat_channels = feat_channels
|
||||||
|
self.stacked_convs = stacked_convs
|
||||||
|
self.strides = strides
|
||||||
|
self.use_depthwise = use_depthwise
|
||||||
|
self.dcn_on_last_conv = dcn_on_last_conv
|
||||||
|
assert conv_bias == 'auto' or isinstance(conv_bias, bool)
|
||||||
|
self.conv_bias = conv_bias
|
||||||
|
self.use_sigmoid_cls = True
|
||||||
|
|
||||||
|
self.conv_cfg = conv_cfg
|
||||||
|
self.norm_cfg = norm_cfg
|
||||||
|
self.act_cfg = act_cfg
|
||||||
|
|
||||||
|
self.prior_generator = MlvlPointGenerator(strides, offset=0)
|
||||||
|
|
||||||
|
self.fp16_enabled = False
|
||||||
|
self._init_layers()
|
||||||
|
|
||||||
|
def _init_layers(self):
|
||||||
|
self.multi_level_cls_convs = nn.ModuleList()
|
||||||
|
self.multi_level_reg_convs = nn.ModuleList()
|
||||||
|
self.multi_level_conv_cls = nn.ModuleList()
|
||||||
|
self.multi_level_conv_reg = nn.ModuleList()
|
||||||
|
self.multi_level_conv_obj = nn.ModuleList()
|
||||||
|
for _ in self.strides:
|
||||||
|
self.multi_level_cls_convs.append(self._build_stacked_convs())
|
||||||
|
self.multi_level_reg_convs.append(self._build_stacked_convs())
|
||||||
|
conv_cls, conv_reg, conv_obj = self._build_predictor()
|
||||||
|
self.multi_level_conv_cls.append(conv_cls)
|
||||||
|
self.multi_level_conv_reg.append(conv_reg)
|
||||||
|
self.multi_level_conv_obj.append(conv_obj)
|
||||||
|
|
||||||
|
def _build_stacked_convs(self):
|
||||||
|
"""Initialize conv layers of a single level head."""
|
||||||
|
conv = ConvModule
|
||||||
|
stacked_convs = []
|
||||||
|
for i in range(self.stacked_convs):
|
||||||
|
chn = self.in_channels if i == 0 else self.feat_channels
|
||||||
|
if self.dcn_on_last_conv and i == self.stacked_convs - 1:
|
||||||
|
conv_cfg = dict(type='DCNv2')
|
||||||
|
else:
|
||||||
|
conv_cfg = self.conv_cfg
|
||||||
|
stacked_convs.append(
|
||||||
|
conv(
|
||||||
|
chn,
|
||||||
|
self.feat_channels,
|
||||||
|
3,
|
||||||
|
stride=1,
|
||||||
|
padding=1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=self.norm_cfg,
|
||||||
|
act_cfg=self.act_cfg,
|
||||||
|
bias=self.conv_bias))
|
||||||
|
return nn.Sequential(*stacked_convs)
|
||||||
|
|
||||||
|
def _build_predictor(self):
|
||||||
|
"""Initialize predictor layers of a single level head."""
|
||||||
|
conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
|
||||||
|
conv_reg = nn.Conv2d(self.feat_channels, 4, 1)
|
||||||
|
conv_obj = nn.Conv2d(self.feat_channels, 1, 1)
|
||||||
|
return conv_cls, conv_reg, conv_obj
|
||||||
|
|
||||||
|
def forward_single(self, x, cls_convs, reg_convs, conv_cls, conv_reg,
|
||||||
|
conv_obj):
|
||||||
|
"""Forward feature of a single scale level."""
|
||||||
|
|
||||||
|
cls_feat = cls_convs(x)
|
||||||
|
reg_feat = reg_convs(x)
|
||||||
|
|
||||||
|
cls_score = conv_cls(cls_feat)
|
||||||
|
bbox_pred = conv_reg(reg_feat)
|
||||||
|
objectness = conv_obj(reg_feat)
|
||||||
|
|
||||||
|
return cls_score, bbox_pred, objectness
|
||||||
|
|
||||||
|
def forward(self, feats):
|
||||||
|
"""Forward features from the upstream network.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
feats (tuple[Tensor]): Features from the upstream network, each is
|
||||||
|
a 4D-tensor.
|
||||||
|
Returns:
|
||||||
|
tuple[Tensor]: A tuple of multi-level predication map, each is a
|
||||||
|
4D-tensor of shape (batch_size, 5+num_classes, height, width).
|
||||||
|
"""
|
||||||
|
|
||||||
|
return multi_apply(self.forward_single, feats,
|
||||||
|
self.multi_level_cls_convs,
|
||||||
|
self.multi_level_reg_convs,
|
||||||
|
self.multi_level_conv_cls,
|
||||||
|
self.multi_level_conv_reg,
|
||||||
|
self.multi_level_conv_obj)
|
||||||
|
|
||||||
|
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses'))
|
||||||
|
def get_bboxes(self,
|
||||||
|
cls_scores,
|
||||||
|
bbox_preds,
|
||||||
|
objectnesses,
|
||||||
|
cfg=None):
|
||||||
|
"""Transform network outputs of a batch into bbox results.
|
||||||
|
Args:
|
||||||
|
cls_scores (list[Tensor]): Classification scores for all
|
||||||
|
scale levels, each is a 4D-tensor, has shape
|
||||||
|
(batch_size, num_priors * num_classes, H, W).
|
||||||
|
bbox_preds (list[Tensor]): Box energies / deltas for all
|
||||||
|
scale levels, each is a 4D-tensor, has shape
|
||||||
|
(batch_size, num_priors * 4, H, W).
|
||||||
|
objectnesses (list[Tensor], Optional): Score factor for
|
||||||
|
all scale level, each is a 4D-tensor, has shape
|
||||||
|
(batch_size, 1, H, W).
|
||||||
|
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
|
||||||
|
if None, test_cfg would be used. Default None.
|
||||||
|
rescale (bool): If True, return boxes in original image space.
|
||||||
|
Default False.
|
||||||
|
with_nms (bool): If True, do nms before return boxes.
|
||||||
|
Default True.
|
||||||
|
Returns:
|
||||||
|
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
|
||||||
|
The first item is an (n, 5) tensor, where the first 4 columns
|
||||||
|
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
|
||||||
|
5-th column is a score between 0 and 1. The second item is a
|
||||||
|
(n,) tensor where each item is the predicted class label of
|
||||||
|
the corresponding box.
|
||||||
|
"""
|
||||||
|
assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
|
||||||
|
cfg = self.nms_config if cfg is None else cfg
|
||||||
|
|
||||||
|
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
|
||||||
|
mlvl_priors = self.prior_generator.grid_priors(
|
||||||
|
featmap_sizes,
|
||||||
|
dtype=cls_scores[0].dtype,
|
||||||
|
device=cls_scores[0].device,
|
||||||
|
with_stride=True)
|
||||||
|
|
||||||
|
# flatten cls_scores, bbox_preds and objectness
|
||||||
|
flatten_cls_scores = [
|
||||||
|
cls_score.permute(0, 2, 3, 1).reshape(1, -1,
|
||||||
|
self.cls_out_channels)
|
||||||
|
for cls_score in cls_scores
|
||||||
|
]
|
||||||
|
flatten_bbox_preds = [
|
||||||
|
bbox_pred.permute(0, 2, 3, 1).reshape(1, -1, 4)
|
||||||
|
for bbox_pred in bbox_preds
|
||||||
|
]
|
||||||
|
flatten_objectness = [
|
||||||
|
objectness.permute(0, 2, 3, 1).reshape(1, -1)
|
||||||
|
for objectness in objectnesses
|
||||||
|
]
|
||||||
|
|
||||||
|
flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
|
||||||
|
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
|
||||||
|
flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
|
||||||
|
flatten_priors = torch.cat(mlvl_priors)
|
||||||
|
|
||||||
|
flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)
|
||||||
|
|
||||||
|
result_list = []
|
||||||
|
for img_id in range(1):
|
||||||
|
cls_scores = flatten_cls_scores[img_id]
|
||||||
|
score_factor = flatten_objectness[img_id]
|
||||||
|
bboxes = flatten_bboxes[img_id]
|
||||||
|
|
||||||
|
result_list.append(
|
||||||
|
self._bboxes_nms(cls_scores, bboxes, score_factor, cfg))
|
||||||
|
|
||||||
|
return result_list
|
||||||
|
|
||||||
|
def _bbox_decode(self, priors, bbox_preds):
|
||||||
|
xys = (bbox_preds[..., :2] * priors[:, 2:]) + priors[:, :2]
|
||||||
|
whs = bbox_preds[..., 2:].exp() * priors[:, 2:]
|
||||||
|
|
||||||
|
tl_x = (xys[..., 0] - whs[..., 0] / 2)
|
||||||
|
tl_y = (xys[..., 1] - whs[..., 1] / 2)
|
||||||
|
br_x = (xys[..., 0] + whs[..., 0] / 2)
|
||||||
|
br_y = (xys[..., 1] + whs[..., 1] / 2)
|
||||||
|
|
||||||
|
decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1)
|
||||||
|
return decoded_bboxes
|
||||||
|
|
||||||
|
def _bboxes_nms(self, cls_scores, bboxes, score_factor, cfg):
|
||||||
|
max_scores, labels = torch.max(cls_scores, 1)
|
||||||
|
valid_mask = score_factor * max_scores >= cfg['score_thr']
|
||||||
|
bboxes = bboxes[valid_mask]
|
||||||
|
scores = max_scores[valid_mask] * score_factor[valid_mask]
|
||||||
|
labels = labels[valid_mask]
|
||||||
|
|
||||||
|
if labels.numel() == 0:
|
||||||
|
return bboxes, labels
|
||||||
|
else:
|
||||||
|
dets, keep = batched_nms(bboxes.float(), scores.float(), labels, cfg['nms'])
|
||||||
|
return dets, labels[keep]
|
||||||
|
|
||||||
|
def simple_test_bboxes(self, feats):
|
||||||
|
"""Test det bboxes without test-time augmentation, can be applied in
|
||||||
|
DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,
|
||||||
|
etc.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
feats (tuple[torch.Tensor]): Multi-level features from the
|
||||||
|
upstream network, each is a 4D-tensor.
|
||||||
|
rescale (bool, optional): Whether to rescale the results.
|
||||||
|
Defaults to False.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
|
||||||
|
The first item is ``bboxes`` with shape (n, 5),
|
||||||
|
where 5 represent (tl_x, tl_y, br_x, br_y, score).
|
||||||
|
The shape of the second tensor in the tuple is ``labels``
|
||||||
|
with shape (n,)
|
||||||
|
"""
|
||||||
|
outs = self.forward(feats)
|
||||||
|
results_list = self.get_bboxes(*outs)
|
||||||
|
return results_list
|
75
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/factory.py
vendored
Normal file
75
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/factory.py
vendored
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import hashlib
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
def sha256sum(filename):
|
||||||
|
h = hashlib.sha256()
|
||||||
|
b = bytearray(128*1024)
|
||||||
|
mv = memoryview(b)
|
||||||
|
with open(filename, 'rb', buffering=0) as f:
|
||||||
|
for n in iter(lambda : f.readinto(mv), 0):
|
||||||
|
h.update(mv[:n])
|
||||||
|
return h.hexdigest()
|
||||||
|
|
||||||
|
|
||||||
|
online_model_factory = {
|
||||||
|
'yolox-s-general-text-pretrain-20221226': {
|
||||||
|
'url': 'https://github.com/moewiee/satrn-model-factory/raw/main/62j266xm8r.pth',
|
||||||
|
'hash': '89bff792685af454d0cfea5d6d673be6914d614e4c2044e786da6eddf36f8b50'},
|
||||||
|
'yolox-s-checkbox-20220726': {
|
||||||
|
'url': 'https://github.com/moewiee/satrn-model-factory/raw/main/1647d7eys7.pth',
|
||||||
|
'hash': '7c1e188b7375dcf0b7b9d317675ebd92a86fdc29363558002249867249ee10f8'},
|
||||||
|
'yolox-s-idcard-5c-20221027': {
|
||||||
|
'url': 'https://github.com/moewiee/satrn-model-factory/raw/main/jr0egad3ix.pth',
|
||||||
|
'hash': '73a7772594c1f6d3f6d6a98b6d6e4097af5026864e3bd50531ad9e635ae795a7'},
|
||||||
|
'yolox-s-handwritten-text-line-20230228': {
|
||||||
|
'url': 'https://github.com/moewiee/satrn-model-factory/raw/main/rb07rtwmgi.pth',
|
||||||
|
'hash': 'a31d1bf8fc880479d2e11463dad0b4081952a13e553a02919109b634a1190ef1'}
|
||||||
|
}
|
||||||
|
|
||||||
|
__hub_available_versions__ = online_model_factory.keys()
|
||||||
|
|
||||||
|
def _get_from_hub(file_path, version, version_url):
|
||||||
|
os.system(f'wget -O {file_path} {version_url}')
|
||||||
|
assert os.path.exists(file_path), \
|
||||||
|
'wget failed while trying to retrieve from hub.'
|
||||||
|
downloaded_hash = sha256sum(file_path)
|
||||||
|
if downloaded_hash != online_model_factory[version]['hash']:
|
||||||
|
os.remove(file_path)
|
||||||
|
raise ValueError('sha256 hash doesnt match for version retrieved from hub.')
|
||||||
|
|
||||||
|
def _get(version):
|
||||||
|
use_online = version in __hub_available_versions__
|
||||||
|
|
||||||
|
if not use_online and not os.path.exists(version):
|
||||||
|
raise ValueError(f'Model version {version} not found online and not found local.')
|
||||||
|
|
||||||
|
hub_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'hub')
|
||||||
|
if not os.path.exists(hub_path):
|
||||||
|
os.makedirs(hub_path)
|
||||||
|
if use_online:
|
||||||
|
version_url = online_model_factory[version]['url']
|
||||||
|
file_path = os.path.join(hub_path, os.path.basename(version_url))
|
||||||
|
else:
|
||||||
|
file_path = os.path.join(hub_path, os.path.basename(version))
|
||||||
|
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
if use_online:
|
||||||
|
_get_from_hub(file_path, version, version_url)
|
||||||
|
else:
|
||||||
|
shutil.copy2(version, file_path)
|
||||||
|
else:
|
||||||
|
if use_online:
|
||||||
|
downloaded_hash = sha256sum(file_path)
|
||||||
|
if downloaded_hash != online_model_factory[version]['hash']:
|
||||||
|
os.remove(file_path)
|
||||||
|
warnings.warn('existing hub version sha256 hash doesnt match, now re-download from hub.')
|
||||||
|
_get_from_hub(file_path, version, version_url)
|
||||||
|
else:
|
||||||
|
if sha256sum(file_path) != sha256sum(version):
|
||||||
|
os.remove(file_path)
|
||||||
|
warnings.warn('existing local version sha256 hash doesnt match, now replace with new local version.')
|
||||||
|
shutil.copy2(version, file_path)
|
||||||
|
|
||||||
|
return file_path
|
151
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/model.py
vendored
Normal file
151
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/model.py
vendored
Normal file
@ -0,0 +1,151 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from .backbone import CSPDarknet
|
||||||
|
from .neck import YOLOXPAFPN
|
||||||
|
from .bbox_head import YOLOXHead
|
||||||
|
from .transform import DetectorDataPipeline, AutoRotateDetectorDataPipeline
|
||||||
|
from .factory import _get as get_version
|
||||||
|
|
||||||
|
|
||||||
|
def bbox2result(bboxes, labels, num_classes):
|
||||||
|
"""Convert detection results to a list of numpy arrays.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
bboxes (torch.Tensor | np.ndarray): shape (n, 5)
|
||||||
|
labels (torch.Tensor | np.ndarray): shape (n, )
|
||||||
|
num_classes (int): class number, including background class
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list(ndarray): bbox results of each class
|
||||||
|
"""
|
||||||
|
if bboxes.shape[0] == 0:
|
||||||
|
return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)]
|
||||||
|
else:
|
||||||
|
if isinstance(bboxes, torch.Tensor):
|
||||||
|
bboxes = bboxes.detach().cpu().numpy()
|
||||||
|
labels = labels.detach().cpu().numpy()
|
||||||
|
return [bboxes[labels == i, :] for i in range(num_classes)]
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_bbox(bboxes, scale):
|
||||||
|
for i in range(len(bboxes)):
|
||||||
|
bboxes[i][:,:4] /= scale
|
||||||
|
return bboxes
|
||||||
|
|
||||||
|
|
||||||
|
class SingleStageDetector(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
version,
|
||||||
|
device):
|
||||||
|
super(SingleStageDetector, self).__init__()
|
||||||
|
|
||||||
|
assert 'cpu' in device or 'cuda' in device
|
||||||
|
|
||||||
|
checkpoint = get_version(version)
|
||||||
|
pt = torch.load(checkpoint, 'cpu')
|
||||||
|
|
||||||
|
self.pipeline = DetectorDataPipeline(**pt['pipeline_args'], device=device)
|
||||||
|
self.backbone = CSPDarknet(**pt['backbone_args'])
|
||||||
|
self.neck = YOLOXPAFPN(**pt['neck_args'])
|
||||||
|
self.bbox_head = YOLOXHead(**pt['bbox_head_args'])
|
||||||
|
self.load_state_dict(pt['state_dict'], strict=True)
|
||||||
|
|
||||||
|
self.eval()
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
self = self.to(device=device)
|
||||||
|
|
||||||
|
print(f'Text detection load from version {version}.')
|
||||||
|
|
||||||
|
def extract_feat(self, img):
|
||||||
|
"""Directly extract features from the backbone + neck."""
|
||||||
|
|
||||||
|
x = self.backbone(img)
|
||||||
|
x = self.neck(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, img):
|
||||||
|
"""Test function without test-time augmentation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
img (np.ndarray): Images with shape (H, W, C) or
|
||||||
|
img (str): Path to image.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list[list[np.ndarray]]: BBox results of each image and classes.
|
||||||
|
The list corresponds to each class.
|
||||||
|
"""
|
||||||
|
img, origin_shape, new_shape = self.pipeline(img)
|
||||||
|
scale = min(new_shape / origin_shape)
|
||||||
|
feat = self.extract_feat(img)
|
||||||
|
results_list = self.bbox_head.simple_test_bboxes(feat)
|
||||||
|
bbox_results = [
|
||||||
|
bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)
|
||||||
|
for det_bboxes, det_labels in results_list
|
||||||
|
][0]
|
||||||
|
bbox_results = normalize_bbox(bbox_results, scale)
|
||||||
|
return bbox_results
|
||||||
|
|
||||||
|
|
||||||
|
class AutoRotateDetector(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
version,
|
||||||
|
device):
|
||||||
|
super(AutoRotateDetector, self).__init__()
|
||||||
|
|
||||||
|
assert 'cpu' in device or 'cuda' in device
|
||||||
|
|
||||||
|
checkpoint = get_version(version)
|
||||||
|
pt = torch.load(checkpoint, 'cpu')
|
||||||
|
|
||||||
|
self.pipeline = AutoRotateDetectorDataPipeline(**pt['pipeline_args'], device=device)
|
||||||
|
self.backbone = CSPDarknet(**pt['backbone_args'])
|
||||||
|
self.neck = YOLOXPAFPN(**pt['neck_args'])
|
||||||
|
self.bbox_head = YOLOXHead(**pt['bbox_head_args'], nms_score_thr=0.8)
|
||||||
|
self.load_state_dict(pt['state_dict'], strict=True)
|
||||||
|
|
||||||
|
self.eval()
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
self = self.to(device=device)
|
||||||
|
|
||||||
|
print(f'Auto rotate detector load from version {version}.')
|
||||||
|
|
||||||
|
def extract_feat(self, img):
|
||||||
|
"""Directly extract features from the backbone + neck."""
|
||||||
|
|
||||||
|
x = self.backbone(img)
|
||||||
|
x = self.neck(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, img):
|
||||||
|
"""Test function without test-time augmentation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
img (np.ndarray): Images with shape (H, W, C) or
|
||||||
|
img (str): Path to image.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
np.ndarray: Straight rotated image.
|
||||||
|
"""
|
||||||
|
imgs, imgs_np = self.pipeline(img)
|
||||||
|
maxCount = -1
|
||||||
|
maxCountRot = None
|
||||||
|
for idx, img in enumerate(imgs):
|
||||||
|
currentCount = 0
|
||||||
|
feat = self.extract_feat(img)
|
||||||
|
results_list = self.bbox_head.simple_test_bboxes(feat)
|
||||||
|
bbox_results = [
|
||||||
|
bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)
|
||||||
|
for det_bboxes, det_labels in results_list
|
||||||
|
][0]
|
||||||
|
for class_result in bbox_results:
|
||||||
|
currentCount += len(class_result)
|
||||||
|
if currentCount > maxCount:
|
||||||
|
maxCount = currentCount
|
||||||
|
maxCountRot = idx
|
||||||
|
return imgs_np[maxCountRot]
|
140
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/neck.py
vendored
Normal file
140
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/neck.py
vendored
Normal file
@ -0,0 +1,140 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from mmcv.cnn import ConvModule
|
||||||
|
from .backbone import CSPLayer
|
||||||
|
|
||||||
|
|
||||||
|
class YOLOXPAFPN(nn.Module):
|
||||||
|
"""Path Aggregation Network used in YOLOX.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (List[int]): Number of input channels per scale.
|
||||||
|
out_channels (int): Number of output channels (used at each scale)
|
||||||
|
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 3
|
||||||
|
use_depthwise (bool): Whether to depthwise separable convolution in
|
||||||
|
blocks. Default: False
|
||||||
|
upsample_cfg (dict): Config dict for interpolate layer.
|
||||||
|
Default: `dict(scale_factor=2, mode='nearest')`
|
||||||
|
conv_cfg (dict, optional): Config dict for convolution layer.
|
||||||
|
Default: None, which means using conv2d.
|
||||||
|
norm_cfg (dict): Config dict for normalization layer.
|
||||||
|
Default: dict(type='BN')
|
||||||
|
act_cfg (dict): Config dict for activation layer.
|
||||||
|
Default: dict(type='Swish')
|
||||||
|
init_cfg (dict or list[dict], optional): Initialization config dict.
|
||||||
|
Default: None.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
num_csp_blocks=3,
|
||||||
|
use_depthwise=False,
|
||||||
|
upsample_cfg=dict(scale_factor=2, mode='nearest'),
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||||
|
act_cfg=dict(type='Swish')):
|
||||||
|
super(YOLOXPAFPN, self).__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
|
||||||
|
# build top-down blocks
|
||||||
|
self.upsample = nn.Upsample(**upsample_cfg)
|
||||||
|
self.reduce_layers = nn.ModuleList()
|
||||||
|
self.top_down_blocks = nn.ModuleList()
|
||||||
|
for idx in range(len(in_channels) - 1, 0, -1):
|
||||||
|
self.reduce_layers.append(
|
||||||
|
ConvModule(
|
||||||
|
in_channels[idx],
|
||||||
|
in_channels[idx - 1],
|
||||||
|
1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg))
|
||||||
|
self.top_down_blocks.append(
|
||||||
|
CSPLayer(
|
||||||
|
in_channels[idx - 1] * 2,
|
||||||
|
in_channels[idx - 1],
|
||||||
|
num_blocks=num_csp_blocks,
|
||||||
|
add_identity=False,
|
||||||
|
use_depthwise=use_depthwise,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg))
|
||||||
|
|
||||||
|
# build bottom-up blocks
|
||||||
|
self.downsamples = nn.ModuleList()
|
||||||
|
self.bottom_up_blocks = nn.ModuleList()
|
||||||
|
for idx in range(len(in_channels) - 1):
|
||||||
|
self.downsamples.append(
|
||||||
|
ConvModule(
|
||||||
|
in_channels[idx],
|
||||||
|
in_channels[idx],
|
||||||
|
3,
|
||||||
|
stride=2,
|
||||||
|
padding=1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg))
|
||||||
|
self.bottom_up_blocks.append(
|
||||||
|
CSPLayer(
|
||||||
|
in_channels[idx] * 2,
|
||||||
|
in_channels[idx + 1],
|
||||||
|
num_blocks=num_csp_blocks,
|
||||||
|
add_identity=False,
|
||||||
|
use_depthwise=use_depthwise,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg))
|
||||||
|
|
||||||
|
self.out_convs = nn.ModuleList()
|
||||||
|
for i in range(len(in_channels)):
|
||||||
|
self.out_convs.append(
|
||||||
|
ConvModule(
|
||||||
|
in_channels[i],
|
||||||
|
out_channels,
|
||||||
|
1,
|
||||||
|
conv_cfg=conv_cfg,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
act_cfg=act_cfg))
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
inputs (tuple[Tensor]): input features.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple[Tensor]: YOLOXPAFPN features.
|
||||||
|
"""
|
||||||
|
assert len(inputs) == len(self.in_channels)
|
||||||
|
|
||||||
|
# top-down path
|
||||||
|
inner_outs = [inputs[-1]]
|
||||||
|
for idx in range(len(self.in_channels) - 1, 0, -1):
|
||||||
|
feat_heigh = inner_outs[0]
|
||||||
|
feat_low = inputs[idx - 1]
|
||||||
|
feat_heigh = self.reduce_layers[len(self.in_channels) - 1 - idx](
|
||||||
|
feat_heigh)
|
||||||
|
inner_outs[0] = feat_heigh
|
||||||
|
|
||||||
|
upsample_feat = self.upsample(feat_heigh)
|
||||||
|
|
||||||
|
inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
|
||||||
|
torch.cat([upsample_feat, feat_low], 1))
|
||||||
|
inner_outs.insert(0, inner_out)
|
||||||
|
|
||||||
|
# bottom-up path
|
||||||
|
outs = [inner_outs[0]]
|
||||||
|
for idx in range(len(self.in_channels) - 1):
|
||||||
|
feat_low = outs[-1]
|
||||||
|
feat_height = inner_outs[idx + 1]
|
||||||
|
downsample_feat = self.downsamples[idx](feat_low)
|
||||||
|
out = self.bottom_up_blocks[idx](
|
||||||
|
torch.cat([downsample_feat, feat_height], 1))
|
||||||
|
outs.append(out)
|
||||||
|
|
||||||
|
# out convs
|
||||||
|
for idx, conv in enumerate(self.out_convs):
|
||||||
|
outs[idx] = conv(outs[idx])
|
||||||
|
|
||||||
|
return tuple(outs)
|
225
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/priors.py
vendored
Normal file
225
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/priors.py
vendored
Normal file
@ -0,0 +1,225 @@
|
|||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from torch.nn.modules.utils import _pair
|
||||||
|
|
||||||
|
|
||||||
|
class MlvlPointGenerator:
|
||||||
|
"""Standard points generator for multi-level (Mlvl) feature maps in 2D
|
||||||
|
points-based detectors.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
strides (list[int] | list[tuple[int, int]]): Strides of anchors
|
||||||
|
in multiple feature levels in order (w, h).
|
||||||
|
offset (float): The offset of points, the value is normalized with
|
||||||
|
corresponding stride. Defaults to 0.5.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, strides, offset=0.5):
|
||||||
|
self.strides = [_pair(stride) for stride in strides]
|
||||||
|
self.offset = offset
|
||||||
|
|
||||||
|
@property
|
||||||
|
def num_levels(self):
|
||||||
|
"""int: number of feature levels that the generator will be applied"""
|
||||||
|
return len(self.strides)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def num_base_priors(self):
|
||||||
|
"""list[int]: The number of priors (points) at a point
|
||||||
|
on the feature grid"""
|
||||||
|
return [1 for _ in range(len(self.strides))]
|
||||||
|
|
||||||
|
def _meshgrid(self, x, y, row_major=True):
|
||||||
|
yy, xx = torch.meshgrid(y, x)
|
||||||
|
if row_major:
|
||||||
|
# warning .flatten() would cause error in ONNX exporting
|
||||||
|
# have to use reshape here
|
||||||
|
return xx.flatten(), yy.flatten()
|
||||||
|
|
||||||
|
else:
|
||||||
|
return yy.flatten(), xx.flatten()
|
||||||
|
|
||||||
|
def grid_priors(self,
|
||||||
|
featmap_sizes,
|
||||||
|
dtype=torch.float32,
|
||||||
|
device='cuda',
|
||||||
|
with_stride=False):
|
||||||
|
"""Generate grid points of multiple feature levels.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
featmap_sizes (list[tuple]): List of feature map sizes in
|
||||||
|
multiple feature levels, each size arrange as
|
||||||
|
as (h, w).
|
||||||
|
dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32.
|
||||||
|
device (str): The device where the anchors will be put on.
|
||||||
|
with_stride (bool): Whether to concatenate the stride to
|
||||||
|
the last dimension of points.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
list[torch.Tensor]: Points of multiple feature levels.
|
||||||
|
The sizes of each tensor should be (N, 2) when with stride is
|
||||||
|
``False``, where N = width * height, width and height
|
||||||
|
are the sizes of the corresponding feature level,
|
||||||
|
and the last dimension 2 represent (coord_x, coord_y),
|
||||||
|
otherwise the shape should be (N, 4),
|
||||||
|
and the last dimension 4 represent
|
||||||
|
(coord_x, coord_y, stride_w, stride_h).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert self.num_levels == len(featmap_sizes)
|
||||||
|
multi_level_priors = []
|
||||||
|
for i in range(self.num_levels):
|
||||||
|
priors = self.single_level_grid_priors(
|
||||||
|
featmap_sizes[i],
|
||||||
|
level_idx=i,
|
||||||
|
dtype=dtype,
|
||||||
|
device=device,
|
||||||
|
with_stride=with_stride)
|
||||||
|
multi_level_priors.append(priors)
|
||||||
|
return multi_level_priors
|
||||||
|
|
||||||
|
def single_level_grid_priors(self,
|
||||||
|
featmap_size,
|
||||||
|
level_idx,
|
||||||
|
dtype=torch.float32,
|
||||||
|
device='cuda',
|
||||||
|
with_stride=False):
|
||||||
|
"""Generate grid Points of a single level.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
This function is usually called by method ``self.grid_priors``.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
featmap_size (tuple[int]): Size of the feature maps, arrange as
|
||||||
|
(h, w).
|
||||||
|
level_idx (int): The index of corresponding feature map level.
|
||||||
|
dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32.
|
||||||
|
device (str, optional): The device the tensor will be put on.
|
||||||
|
Defaults to 'cuda'.
|
||||||
|
with_stride (bool): Concatenate the stride to the last dimension
|
||||||
|
of points.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Tensor: Points of single feature levels.
|
||||||
|
The shape of tensor should be (N, 2) when with stride is
|
||||||
|
``False``, where N = width * height, width and height
|
||||||
|
are the sizes of the corresponding feature level,
|
||||||
|
and the last dimension 2 represent (coord_x, coord_y),
|
||||||
|
otherwise the shape should be (N, 4),
|
||||||
|
and the last dimension 4 represent
|
||||||
|
(coord_x, coord_y, stride_w, stride_h).
|
||||||
|
"""
|
||||||
|
feat_h, feat_w = featmap_size
|
||||||
|
stride_w, stride_h = self.strides[level_idx]
|
||||||
|
shift_x = (torch.arange(0, feat_w, device=device) +
|
||||||
|
self.offset) * stride_w
|
||||||
|
# keep featmap_size as Tensor instead of int, so that we
|
||||||
|
# can convert to ONNX correctly
|
||||||
|
shift_x = shift_x.to(dtype)
|
||||||
|
|
||||||
|
shift_y = (torch.arange(0, feat_h, device=device) +
|
||||||
|
self.offset) * stride_h
|
||||||
|
# keep featmap_size as Tensor instead of int, so that we
|
||||||
|
# can convert to ONNX correctly
|
||||||
|
shift_y = shift_y.to(dtype)
|
||||||
|
shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
|
||||||
|
if not with_stride:
|
||||||
|
shifts = torch.stack([shift_xx, shift_yy], dim=-1)
|
||||||
|
else:
|
||||||
|
# use `shape[0]` instead of `len(shift_xx)` for ONNX export
|
||||||
|
stride_w = shift_xx.new_full((shift_xx.shape[0], ),
|
||||||
|
stride_w).to(dtype)
|
||||||
|
stride_h = shift_xx.new_full((shift_yy.shape[0], ),
|
||||||
|
stride_h).to(dtype)
|
||||||
|
shifts = torch.stack([shift_xx, shift_yy, stride_w, stride_h],
|
||||||
|
dim=-1)
|
||||||
|
all_points = shifts.to(device)
|
||||||
|
return all_points
|
||||||
|
|
||||||
|
def valid_flags(self, featmap_sizes, pad_shape, device='cuda'):
|
||||||
|
"""Generate valid flags of points of multiple feature levels.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
featmap_sizes (list(tuple)): List of feature map sizes in
|
||||||
|
multiple feature levels, each size arrange as
|
||||||
|
as (h, w).
|
||||||
|
pad_shape (tuple(int)): The padded shape of the image,
|
||||||
|
arrange as (h, w).
|
||||||
|
device (str): The device where the anchors will be put on.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
list(torch.Tensor): Valid flags of points of multiple levels.
|
||||||
|
"""
|
||||||
|
assert self.num_levels == len(featmap_sizes)
|
||||||
|
multi_level_flags = []
|
||||||
|
for i in range(self.num_levels):
|
||||||
|
point_stride = self.strides[i]
|
||||||
|
feat_h, feat_w = featmap_sizes[i]
|
||||||
|
h, w = pad_shape[:2]
|
||||||
|
valid_feat_h = min(int(np.ceil(h / point_stride[1])), feat_h)
|
||||||
|
valid_feat_w = min(int(np.ceil(w / point_stride[0])), feat_w)
|
||||||
|
flags = self.single_level_valid_flags((feat_h, feat_w),
|
||||||
|
(valid_feat_h, valid_feat_w),
|
||||||
|
device=device)
|
||||||
|
multi_level_flags.append(flags)
|
||||||
|
return multi_level_flags
|
||||||
|
|
||||||
|
def single_level_valid_flags(self,
|
||||||
|
featmap_size,
|
||||||
|
valid_size,
|
||||||
|
device='cuda'):
|
||||||
|
"""Generate the valid flags of points of a single feature map.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
featmap_size (tuple[int]): The size of feature maps, arrange as
|
||||||
|
as (h, w).
|
||||||
|
valid_size (tuple[int]): The valid size of the feature maps.
|
||||||
|
The size arrange as as (h, w).
|
||||||
|
device (str, optional): The device where the flags will be put on.
|
||||||
|
Defaults to 'cuda'.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: The valid flags of each points in a single level \
|
||||||
|
feature map.
|
||||||
|
"""
|
||||||
|
feat_h, feat_w = featmap_size
|
||||||
|
valid_h, valid_w = valid_size
|
||||||
|
assert valid_h <= feat_h and valid_w <= feat_w
|
||||||
|
valid_x = torch.zeros(feat_w, dtype=torch.bool, device=device)
|
||||||
|
valid_y = torch.zeros(feat_h, dtype=torch.bool, device=device)
|
||||||
|
valid_x[:valid_w] = 1
|
||||||
|
valid_y[:valid_h] = 1
|
||||||
|
valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
|
||||||
|
valid = valid_xx & valid_yy
|
||||||
|
return valid
|
||||||
|
|
||||||
|
def sparse_priors(self,
|
||||||
|
prior_idxs,
|
||||||
|
featmap_size,
|
||||||
|
level_idx,
|
||||||
|
dtype=torch.float32,
|
||||||
|
device='cuda'):
|
||||||
|
"""Generate sparse points according to the ``prior_idxs``.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prior_idxs (Tensor): The index of corresponding anchors
|
||||||
|
in the feature map.
|
||||||
|
featmap_size (tuple[int]): feature map size arrange as (w, h).
|
||||||
|
level_idx (int): The level index of corresponding feature
|
||||||
|
map.
|
||||||
|
dtype (obj:`torch.dtype`): Date type of points. Defaults to
|
||||||
|
``torch.float32``.
|
||||||
|
device (obj:`torch.device`): The device where the points is
|
||||||
|
located.
|
||||||
|
Returns:
|
||||||
|
Tensor: Anchor with shape (N, 2), N should be equal to
|
||||||
|
the length of ``prior_idxs``. And last dimension
|
||||||
|
2 represent (coord_x, coord_y).
|
||||||
|
"""
|
||||||
|
height, width = featmap_size
|
||||||
|
x = (prior_idxs % width + self.offset) * self.strides[level_idx][0]
|
||||||
|
y = ((prior_idxs // width) % height +
|
||||||
|
self.offset) * self.strides[level_idx][1]
|
||||||
|
prioris = torch.stack([x, y], 1).to(dtype)
|
||||||
|
prioris = prioris.to(device)
|
||||||
|
return prioris
|
81
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/transform.py
vendored
Normal file
81
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/transform.py
vendored
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
import mmcv
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class DetectorDataPipeline:
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
img_scale,
|
||||||
|
device):
|
||||||
|
self.scale = img_scale
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def load(self, img):
|
||||||
|
if isinstance(img, str):
|
||||||
|
return cv2.imread(img)
|
||||||
|
elif isinstance(img, np.ndarray):
|
||||||
|
return img
|
||||||
|
else:
|
||||||
|
raise ValueError(f'img input must be a str/np.ndarray, got {type(img)}')
|
||||||
|
|
||||||
|
def resize(self, img):
|
||||||
|
origin_shape = img.shape[:2]
|
||||||
|
img = mmcv.imrescale(img,
|
||||||
|
self.scale,
|
||||||
|
return_scale=False,
|
||||||
|
interpolation='bilinear',
|
||||||
|
backend='cv2')
|
||||||
|
|
||||||
|
return img, origin_shape, np.array(self.scale)
|
||||||
|
|
||||||
|
def pad(self, img):
|
||||||
|
if self.scale is not None:
|
||||||
|
width = max(self.scale[1] - img.shape[1], 0)
|
||||||
|
height = max(self.scale[0] - img.shape[0], 0)
|
||||||
|
padding = (0, 0, width, height)
|
||||||
|
|
||||||
|
img = cv2.copyMakeBorder(img,
|
||||||
|
padding[1],
|
||||||
|
padding[3],
|
||||||
|
padding[0],
|
||||||
|
padding[2],
|
||||||
|
cv2.BORDER_CONSTANT,
|
||||||
|
value=(114, 114, 114,))
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
def to_tensor(self, img):
|
||||||
|
|
||||||
|
img = torch.from_numpy(img.astype(np.float32)).permute(2,0,1).unsqueeze(0)
|
||||||
|
img = img.to(device=self.device)
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
def __call__(self, img):
|
||||||
|
img = self.load(img)
|
||||||
|
img, origin_shape, new_shape = self.resize(img)
|
||||||
|
img = self.pad(img)
|
||||||
|
img = self.to_tensor(img)
|
||||||
|
|
||||||
|
return img, origin_shape, new_shape
|
||||||
|
|
||||||
|
|
||||||
|
class AutoRotateDetectorDataPipeline(DetectorDataPipeline):
|
||||||
|
|
||||||
|
def __call__(self, img):
|
||||||
|
img = self.load(img)
|
||||||
|
imgs = []
|
||||||
|
imgs_np = []
|
||||||
|
|
||||||
|
for flag in (None, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_180, cv2.ROTATE_90_COUNTERCLOCKWISE):
|
||||||
|
img_t = img if flag is None else cv2.rotate(img, flag)
|
||||||
|
imgs_np.append(img_t)
|
||||||
|
img_t, _, _ = self.resize(img_t)
|
||||||
|
img_t = self.pad(img_t)
|
||||||
|
img_t = self.to_tensor(img_t)
|
||||||
|
|
||||||
|
imgs.append(img_t)
|
||||||
|
|
||||||
|
return imgs, imgs_np
|
1
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/version.py
vendored
Normal file
1
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/sdsvtd/version.py
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
__version__ = '0.1.2'
|
186
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/setup.py
vendored
Normal file
186
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtd/setup.py
vendored
Normal file
@ -0,0 +1,186 @@
|
|||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import shutil
|
||||||
|
import sys
|
||||||
|
import warnings
|
||||||
|
from setuptools import find_packages, setup
|
||||||
|
|
||||||
|
|
||||||
|
def readme():
|
||||||
|
with open('README.md', encoding='utf-8') as f:
|
||||||
|
content = f.read()
|
||||||
|
return content
|
||||||
|
|
||||||
|
|
||||||
|
version_file = 'sdsvtd/version.py'
|
||||||
|
is_windows = sys.platform == 'win32'
|
||||||
|
|
||||||
|
|
||||||
|
def add_mim_extention():
|
||||||
|
"""Add extra files that are required to support MIM into the package.
|
||||||
|
|
||||||
|
These files will be added by creating a symlink to the originals if the
|
||||||
|
package is installed in `editable` mode (e.g. pip install -e .), or by
|
||||||
|
copying from the originals otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# parse installment mode
|
||||||
|
if 'develop' in sys.argv:
|
||||||
|
# installed by `pip install -e .`
|
||||||
|
mode = 'symlink'
|
||||||
|
elif 'sdist' in sys.argv or 'bdist_wheel' in sys.argv:
|
||||||
|
# installed by `pip install .`
|
||||||
|
# or create source distribution by `python setup.py sdist`
|
||||||
|
mode = 'copy'
|
||||||
|
else:
|
||||||
|
return
|
||||||
|
|
||||||
|
filenames = ['tools', 'configs', 'model-index.yml']
|
||||||
|
repo_path = osp.dirname(__file__)
|
||||||
|
mim_path = osp.join(repo_path, 'mmocr', '.mim')
|
||||||
|
os.makedirs(mim_path, exist_ok=True)
|
||||||
|
|
||||||
|
for filename in filenames:
|
||||||
|
if osp.exists(filename):
|
||||||
|
src_path = osp.join(repo_path, filename)
|
||||||
|
tar_path = osp.join(mim_path, filename)
|
||||||
|
|
||||||
|
if osp.isfile(tar_path) or osp.islink(tar_path):
|
||||||
|
os.remove(tar_path)
|
||||||
|
elif osp.isdir(tar_path):
|
||||||
|
shutil.rmtree(tar_path)
|
||||||
|
|
||||||
|
if mode == 'symlink':
|
||||||
|
src_relpath = osp.relpath(src_path, osp.dirname(tar_path))
|
||||||
|
try:
|
||||||
|
os.symlink(src_relpath, tar_path)
|
||||||
|
except OSError:
|
||||||
|
# Creating a symbolic link on windows may raise an
|
||||||
|
# `OSError: [WinError 1314]` due to privilege. If
|
||||||
|
# the error happens, the src file will be copied
|
||||||
|
mode = 'copy'
|
||||||
|
warnings.warn(
|
||||||
|
f'Failed to create a symbolic link for {src_relpath}, '
|
||||||
|
f'and it will be copied to {tar_path}')
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if mode == 'copy':
|
||||||
|
if osp.isfile(src_path):
|
||||||
|
shutil.copyfile(src_path, tar_path)
|
||||||
|
elif osp.isdir(src_path):
|
||||||
|
shutil.copytree(src_path, tar_path)
|
||||||
|
else:
|
||||||
|
warnings.warn(f'Cannot copy file {src_path}.')
|
||||||
|
else:
|
||||||
|
raise ValueError(f'Invalid mode {mode}')
|
||||||
|
|
||||||
|
|
||||||
|
def get_version():
|
||||||
|
with open(version_file, 'r') as f:
|
||||||
|
exec(compile(f.read(), version_file, 'exec'))
|
||||||
|
import sys
|
||||||
|
|
||||||
|
# return short version for sdist
|
||||||
|
if 'sdist' in sys.argv or 'bdist_wheel' in sys.argv:
|
||||||
|
return locals()['short_version']
|
||||||
|
else:
|
||||||
|
return locals()['__version__']
|
||||||
|
|
||||||
|
|
||||||
|
def parse_requirements(fname='requirements.txt', with_version=True):
|
||||||
|
"""Parse the package dependencies listed in a requirements file but strip
|
||||||
|
specific version information.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fname (str): Path to requirements file.
|
||||||
|
with_version (bool, default=False): If True, include version specs.
|
||||||
|
Returns:
|
||||||
|
info (list[str]): List of requirements items.
|
||||||
|
CommandLine:
|
||||||
|
python -c "import setup; print(setup.parse_requirements())"
|
||||||
|
"""
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from os.path import exists
|
||||||
|
require_fpath = fname
|
||||||
|
|
||||||
|
def parse_line(line):
|
||||||
|
"""Parse information from a line in a requirements text file."""
|
||||||
|
if line.startswith('-r '):
|
||||||
|
# Allow specifying requirements in other files
|
||||||
|
target = line.split(' ')[1]
|
||||||
|
for info in parse_require_file(target):
|
||||||
|
yield info
|
||||||
|
else:
|
||||||
|
info = {'line': line}
|
||||||
|
if line.startswith('-e '):
|
||||||
|
info['package'] = line.split('#egg=')[1]
|
||||||
|
else:
|
||||||
|
# Remove versioning from the package
|
||||||
|
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
|
||||||
|
parts = re.split(pat, line, maxsplit=1)
|
||||||
|
parts = [p.strip() for p in parts]
|
||||||
|
|
||||||
|
info['package'] = parts[0]
|
||||||
|
if len(parts) > 1:
|
||||||
|
op, rest = parts[1:]
|
||||||
|
if ';' in rest:
|
||||||
|
# Handle platform specific dependencies
|
||||||
|
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
|
||||||
|
version, platform_deps = map(str.strip,
|
||||||
|
rest.split(';'))
|
||||||
|
info['platform_deps'] = platform_deps
|
||||||
|
else:
|
||||||
|
version = rest # NOQA
|
||||||
|
info['version'] = (op, version)
|
||||||
|
yield info
|
||||||
|
|
||||||
|
def parse_require_file(fpath):
|
||||||
|
with open(fpath, 'r') as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
line = line.strip()
|
||||||
|
if line and not line.startswith('#'):
|
||||||
|
for info in parse_line(line):
|
||||||
|
yield info
|
||||||
|
|
||||||
|
def gen_packages_items():
|
||||||
|
if exists(require_fpath):
|
||||||
|
for info in parse_require_file(require_fpath):
|
||||||
|
parts = [info['package']]
|
||||||
|
if with_version and 'version' in info:
|
||||||
|
parts.extend(info['version'])
|
||||||
|
if not sys.version.startswith('3.4'):
|
||||||
|
# apparently package_deps are broken in 3.4
|
||||||
|
platform_deps = info.get('platform_deps')
|
||||||
|
if platform_deps is not None:
|
||||||
|
parts.append(';' + platform_deps)
|
||||||
|
item = ''.join(parts)
|
||||||
|
yield item
|
||||||
|
|
||||||
|
packages = list(gen_packages_items())
|
||||||
|
return packages
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
setup(
|
||||||
|
name='sdsvtd',
|
||||||
|
version=get_version(),
|
||||||
|
description='SDSV OCR Team Text Detection',
|
||||||
|
long_description=readme(),
|
||||||
|
long_description_content_type='text/markdown',
|
||||||
|
packages=find_packages(exclude=('configs', 'tools', 'demo')),
|
||||||
|
include_package_data=True,
|
||||||
|
classifiers=[
|
||||||
|
'Development Status :: 4 - Beta',
|
||||||
|
'License :: OSI Approved :: Apache Software License',
|
||||||
|
'Operating System :: OS Independent',
|
||||||
|
'Programming Language :: Python :: 3',
|
||||||
|
'Programming Language :: Python :: 3.6',
|
||||||
|
'Programming Language :: Python :: 3.7',
|
||||||
|
'Programming Language :: Python :: 3.8',
|
||||||
|
'Programming Language :: Python :: 3.9',
|
||||||
|
],
|
||||||
|
license='Apache License 2.0',
|
||||||
|
install_requires=parse_requirements('requirements.txt'),
|
||||||
|
zip_safe=False)
|
6
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/.gitignore
vendored
Normal file
6
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
# Builds
|
||||||
|
*.egg-info
|
||||||
|
__pycache__
|
||||||
|
|
||||||
|
# Checkpoint
|
||||||
|
hub
|
674
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/LICENSE
vendored
Normal file
674
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/LICENSE
vendored
Normal file
@ -0,0 +1,674 @@
|
|||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
76
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/README.md
vendored
Normal file
76
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/README.md
vendored
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
## Introduction
|
||||||
|
This repo serve as source code storage for the Standalone SATRN Text Recognizer packages.
|
||||||
|
Installing this package requires 3 additional packages: PyTorch, MMCV, and colorama.
|
||||||
|
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
```shell
|
||||||
|
conda create -n sdsvtr-env python=3.8
|
||||||
|
conda activate sdsvtr-env
|
||||||
|
conda install pytorch torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
|
||||||
|
pip install -U openmim
|
||||||
|
mim install mmcv-full
|
||||||
|
pip install colorama
|
||||||
|
git clone https://github.com/moewiee/sdsvtr.git
|
||||||
|
cd sdsvtr
|
||||||
|
pip install -v -e .
|
||||||
|
```
|
||||||
|
|
||||||
|
## Basic Usage
|
||||||
|
```python
|
||||||
|
from sdsvtr import StandaloneSATRNRunner
|
||||||
|
runner = StandaloneSATRNRunner(version='satrn-lite-general-pretrain-20230106', return_confident=False, use_cuda=False)
|
||||||
|
```
|
||||||
|
|
||||||
|
The `version` parameter accepts version names declared in `sdsvtr.factory.online_model_factory` or a local path such as `$DIR\model.pth`. To check for available versions in the hub, run:
|
||||||
|
```python
|
||||||
|
import sdsvtr
|
||||||
|
print(sdsvtr.__hub_available_versions__)
|
||||||
|
```
|
||||||
|
|
||||||
|
Naturally, a `StandaloneSATRNRunner` instance assumes the input to be one of the following: an instance of `np.ndarray`, an instance of `str`, a list of `np.ndarray`, or a list of `str`, for examples:
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
from sdsvtr import StandaloneSATRNRunner
|
||||||
|
runner = StandaloneSATRNRunner(version='satrn-lite-general-pretrain-20230106', return_confident=False, use_cuda=False)
|
||||||
|
|
||||||
|
dummy_list = [np.ndarray((32,128,3)) for _ in range(100)]
|
||||||
|
result = runner(dummy_list)
|
||||||
|
```
|
||||||
|
|
||||||
|
To run with a specific batchsize, try:
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
from sdsvtr import StandaloneSATRNRunner
|
||||||
|
runner = StandaloneSATRNRunner(version='satrn-lite-general-pretrain-20230106', return_confident=False, device='cuda:0')
|
||||||
|
|
||||||
|
dummy_list = [np.ndarray(1,3,32,128) for _ in range(100)]
|
||||||
|
bs = min(32, len(imageFiles)) # batchsize = 32
|
||||||
|
|
||||||
|
all_results = []
|
||||||
|
while len(dummy_list) > 0:
|
||||||
|
dummy_batch = dummy_list[:bs]
|
||||||
|
dummy_list = dummy_list[bs:]
|
||||||
|
all_results += runner(dummy_batch)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Version Changelog
|
||||||
|
* **[0.0.1]**
|
||||||
|
Initial version with specified features.
|
||||||
|
|
||||||
|
|
||||||
|
* **[0.0.2]**
|
||||||
|
Update online model hub.
|
||||||
|
|
||||||
|
|
||||||
|
* **[0.0.3]**
|
||||||
|
Update API now able to inference with 4 types of inputs: list/instance of `np.ndarray`/`str`
|
||||||
|
Update API interface with `return_confident` parameter.
|
||||||
|
Update `wget` check and `sha256` check for model hub retrieval.
|
||||||
|
|
||||||
|
* **[0.0.4]**
|
||||||
|
Update decoder module with EarlyStopping mechanism to possibly improve inference speed on short sequences.
|
||||||
|
Update API interface with optional argument `max_seq_len_overwrite` to overwrite checkpoint's `max_seq_len` config.
|
||||||
|
|
||||||
|
* **[0.0.5]**
|
||||||
|
Allow inference on a specific device
|
3
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/requirements.txt
vendored
Normal file
3
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/requirements.txt
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
torch
|
||||||
|
colorama
|
||||||
|
mmcv-full
|
@ -0,0 +1,3 @@
|
|||||||
|
from .api import StandaloneSATRNRunner
|
||||||
|
from .version import __version__
|
||||||
|
from .factory import __hub_available_versions__
|
106
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/api.py
vendored
Normal file
106
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/api.py
vendored
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from colorama import Fore, Style
|
||||||
|
|
||||||
|
from .converter import AttnConvertor
|
||||||
|
from .backbone import ResNetABI
|
||||||
|
from .encoder import SatrnEncoder
|
||||||
|
from .decoder import NRTRDecoder
|
||||||
|
from .transform import DataPipelineSATRN
|
||||||
|
from .fp16_utils import patch_norm_fp32
|
||||||
|
from .factory import _get as get_version
|
||||||
|
|
||||||
|
|
||||||
|
class SATRN(nn.Module):
|
||||||
|
"""Standalone implementation for SATRN encode-decode recognizer."""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
version,
|
||||||
|
return_confident=False,
|
||||||
|
device='cpu',
|
||||||
|
max_seq_len_overwrite=None):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
checkpoint = get_version(version)
|
||||||
|
|
||||||
|
pt = torch.load(checkpoint, 'cpu')
|
||||||
|
if device == 'cpu':
|
||||||
|
print(Fore.RED + 'Warning: You are using CPU inference method. Init with device=cuda:<id> to run with CUDA method.' + Style.RESET_ALL)
|
||||||
|
|
||||||
|
self.pipeline = DataPipelineSATRN(**pt['pipeline_args'], device=device)
|
||||||
|
|
||||||
|
# Convertor
|
||||||
|
self.label_convertor = AttnConvertor(**pt['label_convertor_args'], return_confident=return_confident)
|
||||||
|
|
||||||
|
# Backbone
|
||||||
|
self.backbone = ResNetABI(**pt['backbone_args'])
|
||||||
|
|
||||||
|
# Encoder module
|
||||||
|
self.encoder = SatrnEncoder(**pt['encoder_args'])
|
||||||
|
|
||||||
|
# Decoder module
|
||||||
|
decoder_max_seq_len = max_seq_len_overwrite if max_seq_len_overwrite is not None else pt['max_seq_len']
|
||||||
|
self.decoder = NRTRDecoder(
|
||||||
|
**pt['decoder_args'],
|
||||||
|
max_seq_len=decoder_max_seq_len,
|
||||||
|
num_classes=self.label_convertor.num_classes(),
|
||||||
|
start_idx=self.label_convertor.start_idx,
|
||||||
|
padding_idx=self.label_convertor.padding_idx,
|
||||||
|
return_confident=return_confident,
|
||||||
|
end_idx=self.label_convertor.end_idx
|
||||||
|
)
|
||||||
|
|
||||||
|
self.load_state_dict(pt['state_dict'], strict=True)
|
||||||
|
print(f'Text recognition from version {version}.')
|
||||||
|
|
||||||
|
if device != 'cpu':
|
||||||
|
self = self.to(device)
|
||||||
|
self = self.half()
|
||||||
|
patch_norm_fp32(self)
|
||||||
|
|
||||||
|
self.eval()
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def extract_feat(self, img):
|
||||||
|
x = self.backbone(img)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, img):
|
||||||
|
"""Test function with test time augmentation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
imgs (torch.Tensor): Image input tensor.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list[str]: Text label result of each image.
|
||||||
|
"""
|
||||||
|
img = self.pipeline(img)
|
||||||
|
feat = self.extract_feat(img)
|
||||||
|
out_enc = self.encoder(feat)
|
||||||
|
out_dec = self.decoder(out_enc).cpu().numpy()
|
||||||
|
label_strings = self.label_convertor(out_dec)
|
||||||
|
|
||||||
|
return label_strings
|
||||||
|
|
||||||
|
|
||||||
|
class StandaloneSATRNRunner:
|
||||||
|
def __init__(self,
|
||||||
|
version,
|
||||||
|
return_confident,
|
||||||
|
device='cpu',
|
||||||
|
max_seq_len_overwrite=None):
|
||||||
|
self.device = device
|
||||||
|
self.model = SATRN(version=version,
|
||||||
|
return_confident=return_confident,
|
||||||
|
device=self.device,
|
||||||
|
max_seq_len_overwrite=max_seq_len_overwrite)
|
||||||
|
|
||||||
|
def __call__(self, imgs):
|
||||||
|
results = self.model(imgs)
|
||||||
|
|
||||||
|
return results
|
159
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/backbone.py
vendored
Normal file
159
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/backbone.py
vendored
Normal file
@ -0,0 +1,159 @@
|
|||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
def conv3x3(in_planes, out_planes, stride=1):
|
||||||
|
"""3x3 convolution with padding."""
|
||||||
|
return nn.Conv2d(
|
||||||
|
in_planes,
|
||||||
|
out_planes,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=stride,
|
||||||
|
padding=1,
|
||||||
|
bias=False)
|
||||||
|
|
||||||
|
|
||||||
|
def conv1x1(in_planes, out_planes):
|
||||||
|
"""1x1 convolution with padding."""
|
||||||
|
return nn.Conv2d(
|
||||||
|
in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
|
||||||
|
|
||||||
|
|
||||||
|
class BasicBlock(nn.Module):
|
||||||
|
|
||||||
|
expansion = 1
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
inplanes,
|
||||||
|
planes,
|
||||||
|
stride=1,
|
||||||
|
downsample=None,
|
||||||
|
use_conv1x1=False):
|
||||||
|
super(BasicBlock, self).__init__()
|
||||||
|
|
||||||
|
if use_conv1x1:
|
||||||
|
self.conv1 = conv1x1(inplanes, planes)
|
||||||
|
self.conv2 = conv3x3(planes, planes * self.expansion, stride)
|
||||||
|
else:
|
||||||
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||||
|
self.conv2 = conv3x3(planes, planes * self.expansion)
|
||||||
|
|
||||||
|
self.planes = planes
|
||||||
|
self.bn1 = nn.BatchNorm2d(planes)
|
||||||
|
self.relu = nn.ReLU(inplace=True)
|
||||||
|
self.bn2 = nn.BatchNorm2d(planes * self.expansion)
|
||||||
|
self.downsample = downsample
|
||||||
|
self.stride = stride
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
residual = x
|
||||||
|
out = self.conv1(x)
|
||||||
|
out = self.bn1(out)
|
||||||
|
out = self.relu(out)
|
||||||
|
out = self.conv2(out)
|
||||||
|
out = self.bn2(out)
|
||||||
|
if self.downsample is not None:
|
||||||
|
residual = self.downsample(x)
|
||||||
|
out += residual
|
||||||
|
out = self.relu(out)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
class ResNetABI(nn.Module):
|
||||||
|
"""Implement ResNet backbone for text recognition, modified from `ResNet.
|
||||||
|
|
||||||
|
<https://arxiv.org/pdf/1512.03385.pdf>`_ and
|
||||||
|
`<https://github.com/FangShancheng/ABINet>`_
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): Number of channels of input image tensor.
|
||||||
|
stem_channels (int): Number of stem channels.
|
||||||
|
base_channels (int): Number of base channels.
|
||||||
|
arch_settings (list[int]): List of BasicBlock number for each stage.
|
||||||
|
strides (Sequence[int]): Strides of the first block of each stage.
|
||||||
|
out_indices (None | Sequence[int]): Indices of output stages. If not
|
||||||
|
specified, only the last stage will be returned.
|
||||||
|
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels=3,
|
||||||
|
stem_channels=32,
|
||||||
|
base_channels=32,
|
||||||
|
arch_settings=[3, 4, 6, 6, 3],
|
||||||
|
strides=[2, 1, 2, 1, 1],
|
||||||
|
out_indices=None,
|
||||||
|
last_stage_pool=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.out_indices = out_indices
|
||||||
|
self.last_stage_pool = last_stage_pool
|
||||||
|
self.block = BasicBlock
|
||||||
|
self.inplanes = stem_channels
|
||||||
|
|
||||||
|
self._make_stem_layer(in_channels, stem_channels)
|
||||||
|
|
||||||
|
self.res_layers = []
|
||||||
|
planes = base_channels
|
||||||
|
for i, num_blocks in enumerate(arch_settings):
|
||||||
|
stride = strides[i]
|
||||||
|
res_layer = self._make_layer(
|
||||||
|
block=self.block,
|
||||||
|
inplanes=self.inplanes,
|
||||||
|
planes=planes,
|
||||||
|
blocks=num_blocks,
|
||||||
|
stride=stride)
|
||||||
|
self.inplanes = planes * self.block.expansion
|
||||||
|
planes *= 2
|
||||||
|
layer_name = f'layer{i + 1}'
|
||||||
|
self.add_module(layer_name, res_layer)
|
||||||
|
self.res_layers.append(layer_name)
|
||||||
|
|
||||||
|
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
|
||||||
|
layers = []
|
||||||
|
downsample = None
|
||||||
|
if stride != 1 or inplanes != planes:
|
||||||
|
downsample = nn.Sequential(
|
||||||
|
nn.Conv2d(inplanes, planes, 1, stride, bias=False),
|
||||||
|
nn.BatchNorm2d(planes),
|
||||||
|
)
|
||||||
|
layers.append(
|
||||||
|
block(
|
||||||
|
inplanes,
|
||||||
|
planes,
|
||||||
|
use_conv1x1=True,
|
||||||
|
stride=stride,
|
||||||
|
downsample=downsample))
|
||||||
|
inplanes = planes
|
||||||
|
for _ in range(1, blocks):
|
||||||
|
layers.append(block(inplanes, planes, use_conv1x1=True))
|
||||||
|
|
||||||
|
return nn.Sequential(*layers)
|
||||||
|
|
||||||
|
def _make_stem_layer(self, in_channels, stem_channels):
|
||||||
|
self.conv1 = nn.Conv2d(
|
||||||
|
in_channels, stem_channels, kernel_size=3, stride=1, padding=1)
|
||||||
|
self.bn1 = nn.BatchNorm2d(stem_channels)
|
||||||
|
self.relu1 = nn.ReLU(inplace=True)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x (Tensor): Image tensor of shape :math:`(N, 3, H, W)`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor or list[Tensor]: Feature tensor. Its shape depends on
|
||||||
|
ResNetABI's config. It can be a list of feature outputs at specific
|
||||||
|
layers if ``out_indices`` is specified.
|
||||||
|
"""
|
||||||
|
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.bn1(x)
|
||||||
|
x = self.relu1(x)
|
||||||
|
|
||||||
|
outs = []
|
||||||
|
for i, layer_name in enumerate(self.res_layers):
|
||||||
|
res_layer = getattr(self, layer_name)
|
||||||
|
x = res_layer(x)
|
||||||
|
if self.out_indices and i in self.out_indices:
|
||||||
|
outs.append(x)
|
||||||
|
|
||||||
|
return tuple(outs) if self.out_indices else x
|
173
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/conv.py
vendored
Normal file
173
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/conv.py
vendored
Normal file
@ -0,0 +1,173 @@
|
|||||||
|
import warnings
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn.modules.instancenorm import _InstanceNorm
|
||||||
|
from torch.nn.modules.batchnorm import _BatchNorm
|
||||||
|
from mmcv.cnn import build_padding_layer, build_conv_layer, build_norm_layer, build_activation_layer
|
||||||
|
|
||||||
|
class ConvModule(nn.Module):
|
||||||
|
"""A conv block that bundles conv/norm/activation layers.
|
||||||
|
|
||||||
|
This block simplifies the usage of convolution layers, which are commonly
|
||||||
|
used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
|
||||||
|
It is based upon three build methods: `build_conv_layer()`,
|
||||||
|
`build_norm_layer()` and `build_activation_layer()`.
|
||||||
|
|
||||||
|
Besides, we add some additional features in this module.
|
||||||
|
1. Automatically set `bias` of the conv layer.
|
||||||
|
2. Spectral norm is supported.
|
||||||
|
3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
|
||||||
|
supports zero and circular padding, and we add "reflect" padding mode.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): Number of channels in the input feature map.
|
||||||
|
Same as that in ``nn._ConvNd``.
|
||||||
|
out_channels (int): Number of channels produced by the convolution.
|
||||||
|
Same as that in ``nn._ConvNd``.
|
||||||
|
kernel_size (int | tuple[int]): Size of the convolving kernel.
|
||||||
|
Same as that in ``nn._ConvNd``.
|
||||||
|
stride (int | tuple[int]): Stride of the convolution.
|
||||||
|
Same as that in ``nn._ConvNd``.
|
||||||
|
padding (int | tuple[int]): Zero-padding added to both sides of
|
||||||
|
the input. Same as that in ``nn._ConvNd``.
|
||||||
|
dilation (int | tuple[int]): Spacing between kernel elements.
|
||||||
|
Same as that in ``nn._ConvNd``.
|
||||||
|
groups (int): Number of blocked connections from input channels to
|
||||||
|
output channels. Same as that in ``nn._ConvNd``.
|
||||||
|
bias (bool | str): If specified as `auto`, it will be decided by the
|
||||||
|
norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
|
||||||
|
False. Default: "auto".
|
||||||
|
conv_cfg (dict): Config dict for convolution layer. Default: None,
|
||||||
|
which means using conv2d.
|
||||||
|
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
||||||
|
act_cfg (dict): Config dict for activation layer.
|
||||||
|
Default: dict(type='ReLU').
|
||||||
|
inplace (bool): Whether to use inplace mode for activation.
|
||||||
|
Default: True.
|
||||||
|
with_spectral_norm (bool): Whether use spectral norm in conv module.
|
||||||
|
Default: False.
|
||||||
|
padding_mode (str): If the `padding_mode` has not been supported by
|
||||||
|
current `Conv2d` in PyTorch, we will use our own padding layer
|
||||||
|
instead. Currently, we support ['zeros', 'circular'] with official
|
||||||
|
implementation and ['reflect'] with our own implementation.
|
||||||
|
Default: 'zeros'.
|
||||||
|
order (tuple[str]): The order of conv/norm/activation layers. It is a
|
||||||
|
sequence of "conv", "norm" and "act". Common examples are
|
||||||
|
("conv", "norm", "act") and ("act", "conv", "norm").
|
||||||
|
Default: ('conv', 'norm', 'act').
|
||||||
|
"""
|
||||||
|
|
||||||
|
_abbr_ = 'conv_block'
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
dilation=1,
|
||||||
|
groups=1,
|
||||||
|
bias='auto',
|
||||||
|
conv_cfg=None,
|
||||||
|
norm_cfg=None,
|
||||||
|
act_cfg=dict(type='ReLU'),
|
||||||
|
inplace=True,
|
||||||
|
with_spectral_norm=False,
|
||||||
|
padding_mode='zeros',
|
||||||
|
order=('conv', 'norm', 'act')):
|
||||||
|
super(ConvModule, self).__init__()
|
||||||
|
assert conv_cfg is None or isinstance(conv_cfg, dict)
|
||||||
|
assert norm_cfg is None or isinstance(norm_cfg, dict)
|
||||||
|
assert act_cfg is None or isinstance(act_cfg, dict)
|
||||||
|
official_padding_mode = ['zeros', 'circular']
|
||||||
|
self.conv_cfg = conv_cfg
|
||||||
|
self.norm_cfg = norm_cfg
|
||||||
|
self.act_cfg = act_cfg
|
||||||
|
self.inplace = inplace
|
||||||
|
self.with_spectral_norm = with_spectral_norm
|
||||||
|
self.with_explicit_padding = padding_mode not in official_padding_mode
|
||||||
|
self.order = order
|
||||||
|
assert isinstance(self.order, tuple) and len(self.order) == 3
|
||||||
|
assert set(order) == set(['conv', 'norm', 'act'])
|
||||||
|
|
||||||
|
self.with_norm = norm_cfg is not None
|
||||||
|
self.with_activation = act_cfg is not None
|
||||||
|
# if the conv layer is before a norm layer, bias is unnecessary.
|
||||||
|
if bias == 'auto':
|
||||||
|
bias = not self.with_norm
|
||||||
|
self.with_bias = bias
|
||||||
|
|
||||||
|
if self.with_explicit_padding:
|
||||||
|
pad_cfg = dict(type=padding_mode)
|
||||||
|
self.padding_layer = build_padding_layer(pad_cfg, padding)
|
||||||
|
|
||||||
|
# reset padding to 0 for conv module
|
||||||
|
conv_padding = 0 if self.with_explicit_padding else padding
|
||||||
|
# build convolution layer
|
||||||
|
self.conv = build_conv_layer(
|
||||||
|
conv_cfg,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=stride,
|
||||||
|
padding=conv_padding,
|
||||||
|
dilation=dilation,
|
||||||
|
groups=groups,
|
||||||
|
bias=bias)
|
||||||
|
# export the attributes of self.conv to a higher level for convenience
|
||||||
|
self.in_channels = self.conv.in_channels
|
||||||
|
self.out_channels = self.conv.out_channels
|
||||||
|
self.kernel_size = self.conv.kernel_size
|
||||||
|
self.stride = self.conv.stride
|
||||||
|
self.padding = padding
|
||||||
|
self.dilation = self.conv.dilation
|
||||||
|
self.transposed = self.conv.transposed
|
||||||
|
self.output_padding = self.conv.output_padding
|
||||||
|
self.groups = self.conv.groups
|
||||||
|
|
||||||
|
if self.with_spectral_norm:
|
||||||
|
self.conv = nn.utils.spectral_norm(self.conv)
|
||||||
|
|
||||||
|
# build normalization layers
|
||||||
|
if self.with_norm:
|
||||||
|
# norm layer is after conv layer
|
||||||
|
if order.index('norm') > order.index('conv'):
|
||||||
|
norm_channels = out_channels
|
||||||
|
else:
|
||||||
|
norm_channels = in_channels
|
||||||
|
self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels)
|
||||||
|
self.add_module(self.norm_name, norm)
|
||||||
|
if self.with_bias:
|
||||||
|
if isinstance(norm, (_BatchNorm, _InstanceNorm)):
|
||||||
|
warnings.warn(
|
||||||
|
'Unnecessary conv bias before batch/instance norm')
|
||||||
|
else:
|
||||||
|
self.norm_name = None
|
||||||
|
|
||||||
|
# build activation layer
|
||||||
|
if self.with_activation:
|
||||||
|
act_cfg_ = act_cfg.copy()
|
||||||
|
# nn.Tanh has no 'inplace' argument
|
||||||
|
if act_cfg_['type'] not in [
|
||||||
|
'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish'
|
||||||
|
]:
|
||||||
|
act_cfg_.setdefault('inplace', inplace)
|
||||||
|
self.activate = build_activation_layer(act_cfg_)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def norm(self):
|
||||||
|
if self.norm_name:
|
||||||
|
return getattr(self, self.norm_name)
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def forward(self, x, activate=True, norm=True):
|
||||||
|
for layer in self.order:
|
||||||
|
if layer == 'conv':
|
||||||
|
if self.with_explicit_padding:
|
||||||
|
x = self.padding_layer(x)
|
||||||
|
x = self.conv(x)
|
||||||
|
elif layer == 'norm' and norm and self.with_norm:
|
||||||
|
x = self.norm(x)
|
||||||
|
elif layer == 'act' and activate and self.with_activation:
|
||||||
|
x = self.activate(x)
|
||||||
|
return x
|
152
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/converter.py
vendored
Normal file
152
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/converter.py
vendored
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class BaseConvertor:
|
||||||
|
"""Convert between text, index and tensor for text recognize pipeline.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dict_type (str): Type of dict, options are 'DICT36', 'DICT37', 'DICT90'
|
||||||
|
and 'DICT91'.
|
||||||
|
dict_file (None|str): Character dict file path. If not none,
|
||||||
|
the dict_file is of higher priority than dict_type.
|
||||||
|
dict_list (None|list[str]): Character list. If not none, the list
|
||||||
|
is of higher priority than dict_type, but lower than dict_file.
|
||||||
|
"""
|
||||||
|
start_idx = end_idx = padding_idx = 0
|
||||||
|
unknown_idx = None
|
||||||
|
lower = False
|
||||||
|
|
||||||
|
DICT36 = tuple('0123456789abcdefghijklmnopqrstuvwxyz')
|
||||||
|
DICT63 = tuple('0123456789abcdefghijklmnopqrstuvwxyz'
|
||||||
|
'ABCDEFGHIJKLMNOPQRSTUVWXYZ')
|
||||||
|
DICT90 = tuple('0123456789abcdefghijklmnopqrstuvwxyz'
|
||||||
|
'ABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()'
|
||||||
|
'*+,-./:;<=>?@[\\]_`~')
|
||||||
|
DICT131 = tuple('0123456789abcdefghijklmnopqrstuvwxyz'
|
||||||
|
'!"#$%&\'()'
|
||||||
|
'*+,-./:;<=>?@[\\]_`~'
|
||||||
|
'ạảãàáâậầấẩẫăắằặẳẵóòọõỏôộổỗồốơờớợởỡéèẻẹẽêếềệểễúùụủũưựữửừứíìịỉĩýỳỷỵỹđ')
|
||||||
|
DICT224 = tuple('0123456789abcdefghijklmnopqrstuvwxyz'
|
||||||
|
'ABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()'
|
||||||
|
'*+,-./:;<=>?@[\\]_`~{}|^ ̂'
|
||||||
|
'ạảãàáâậầấẩẫăắằặẳẵóòọõỏôộổỗồốơờớợởỡéèẻẹẽêếềệểễúùụủũưựữửừứíìịỉĩýỳỷỵỹđ'
|
||||||
|
'ẠẢÃÀÁÂẬẦẤẨẪĂẮẰẶẲẴÓÒỌÕỎÔỘỔỖỒỐƠỜỚỢỞỠÉÈẺẸẼÊẾỀỆỂỄÚÙỤỦŨƯỰỮỬỪỨÍÌỊỈĨÝỲỶỴỸĐ✪')
|
||||||
|
|
||||||
|
def __init__(self, dict_type='DICT90'):
|
||||||
|
assert dict_type in ('DICT36', 'DICT63', 'DICT90', 'DICT131', 'DICT224')
|
||||||
|
self.idx2char = []
|
||||||
|
|
||||||
|
if dict_type == 'DICT36':
|
||||||
|
self.idx2char = list(self.DICT36)
|
||||||
|
elif dict_type == 'DICT63':
|
||||||
|
self.idx2char = list(self.DICT63)
|
||||||
|
elif dict_type == 'DICT90':
|
||||||
|
self.idx2char = list(self.DICT90)
|
||||||
|
elif dict_type == 'DICT131':
|
||||||
|
self.idx2char = list(self.DICT131)
|
||||||
|
elif dict_type == 'DICT224':
|
||||||
|
self.idx2char = list(self.DICT224)
|
||||||
|
else:
|
||||||
|
raise ('Dictonary not implemented')
|
||||||
|
|
||||||
|
assert len(set(self.idx2char)) == len(self.idx2char), \
|
||||||
|
'Invalid dictionary: Has duplicated characters.'
|
||||||
|
|
||||||
|
self.char2idx = {char: idx for idx, char in enumerate(self.idx2char)}
|
||||||
|
|
||||||
|
def num_classes(self):
|
||||||
|
"""Number of output classes."""
|
||||||
|
return len(self.idx2char)
|
||||||
|
|
||||||
|
|
||||||
|
class AttnConvertor(BaseConvertor):
|
||||||
|
"""Convert between text, index and tensor for encoder-decoder based
|
||||||
|
pipeline.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dict_type (str): Type of dict, should be one of {'DICT36', 'DICT90'}.
|
||||||
|
dict_file (None|str): Character dict file path. If not none,
|
||||||
|
higher priority than dict_type.
|
||||||
|
dict_list (None|list[str]): Character list. If not none, higher
|
||||||
|
priority than dict_type, but lower than dict_file.
|
||||||
|
with_unknown (bool): If True, add `UKN` token to class.
|
||||||
|
max_seq_len (int): Maximum sequence length of label.
|
||||||
|
lower (bool): If True, convert original string to lower case.
|
||||||
|
start_end_same (bool): Whether use the same index for
|
||||||
|
start and end token or not. Default: True.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
dict_type='DICT90',
|
||||||
|
with_unknown=True,
|
||||||
|
max_seq_len=40,
|
||||||
|
lower=False,
|
||||||
|
start_end_same=True,
|
||||||
|
return_confident=False,
|
||||||
|
**kwargs):
|
||||||
|
super().__init__(dict_type)
|
||||||
|
assert isinstance(with_unknown, bool)
|
||||||
|
assert isinstance(max_seq_len, int)
|
||||||
|
assert isinstance(lower, bool)
|
||||||
|
|
||||||
|
self.with_unknown = with_unknown
|
||||||
|
self.max_seq_len = max_seq_len
|
||||||
|
self.lower = lower
|
||||||
|
self.start_end_same = start_end_same
|
||||||
|
self.return_confident = return_confident
|
||||||
|
|
||||||
|
self.update_dict()
|
||||||
|
|
||||||
|
def update_dict(self):
|
||||||
|
start_end_token = '<BOS/EOS>'
|
||||||
|
unknown_token = '<UKN>'
|
||||||
|
padding_token = '<PAD>'
|
||||||
|
|
||||||
|
# unknown
|
||||||
|
self.unknown_idx = None
|
||||||
|
if self.with_unknown:
|
||||||
|
self.idx2char.append(unknown_token)
|
||||||
|
self.unknown_idx = len(self.idx2char) - 1
|
||||||
|
|
||||||
|
# BOS/EOS
|
||||||
|
self.idx2char.append(start_end_token)
|
||||||
|
self.start_idx = len(self.idx2char) - 1
|
||||||
|
if not self.start_end_same:
|
||||||
|
self.idx2char.append(start_end_token)
|
||||||
|
self.end_idx = len(self.idx2char) - 1
|
||||||
|
|
||||||
|
# padding
|
||||||
|
self.idx2char.append(padding_token)
|
||||||
|
self.padding_idx = len(self.idx2char) - 1
|
||||||
|
|
||||||
|
# update char2idx
|
||||||
|
self.char2idx = {}
|
||||||
|
for idx, char in enumerate(self.idx2char):
|
||||||
|
self.char2idx[char] = idx
|
||||||
|
|
||||||
|
def __call__(self, indexes):
|
||||||
|
strings = []
|
||||||
|
confidents = []
|
||||||
|
if self.return_confident:
|
||||||
|
b,sq,_ = indexes.shape
|
||||||
|
for idx in range(b):
|
||||||
|
index = indexes[idx, :, :]
|
||||||
|
chars = index.argmax(-1)
|
||||||
|
confident = index.max(-1)
|
||||||
|
i = 0
|
||||||
|
while i < sq and chars[i] != self.end_idx and chars[i] != self.padding_idx: i += 1
|
||||||
|
chars = chars[:i]
|
||||||
|
confident = confident[:i].min()
|
||||||
|
string = [self.idx2char[i] for i in chars]
|
||||||
|
strings.append(''.join(string))
|
||||||
|
confidents.append(confident)
|
||||||
|
|
||||||
|
return strings, confidents
|
||||||
|
else:
|
||||||
|
for index in indexes:
|
||||||
|
i, l = 0, len(index)
|
||||||
|
while i < l and index[i] != self.end_idx and index[i] != self.padding_idx: i += 1
|
||||||
|
index = index[:i]
|
||||||
|
string = [self.idx2char[i] for i in index]
|
||||||
|
strings.append(''.join(string))
|
||||||
|
return strings
|
278
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/decoder.py
vendored
Normal file
278
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/decoder.py
vendored
Normal file
@ -0,0 +1,278 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from .encoder import MultiHeadAttention
|
||||||
|
|
||||||
|
|
||||||
|
class PositionwiseFeedForward(nn.Module):
|
||||||
|
"""Two-layer feed-forward module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_in (int): The dimension of the input for feedforward
|
||||||
|
network model.
|
||||||
|
d_hid (int): The dimension of the feedforward
|
||||||
|
network model.
|
||||||
|
dropout (float): Dropout layer on feedforward output.
|
||||||
|
act_cfg (dict): Activation cfg for feedforward module.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, d_in, d_hid, dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.w_1 = nn.Linear(d_in, d_hid)
|
||||||
|
self.w_2 = nn.Linear(d_hid, d_in)
|
||||||
|
self.act = nn.GELU()
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.w_1(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = self.w_2(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class PositionalEncoding(nn.Module):
|
||||||
|
"""Fixed positional encoding with sine and cosine functions."""
|
||||||
|
|
||||||
|
def __init__(self, d_hid=512, n_position=200):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# Not a parameter
|
||||||
|
# Position table of shape (1, n_position, d_hid)
|
||||||
|
self.register_buffer(
|
||||||
|
'position_table',
|
||||||
|
self._get_sinusoid_encoding_table(n_position, d_hid))
|
||||||
|
|
||||||
|
def _get_sinusoid_encoding_table(self, n_position, d_hid):
|
||||||
|
"""Sinusoid position encoding table."""
|
||||||
|
denominator = torch.Tensor([
|
||||||
|
1.0 / np.power(10000, 2 * (hid_j // 2) / d_hid)
|
||||||
|
for hid_j in range(d_hid)
|
||||||
|
])
|
||||||
|
denominator = denominator.view(1, -1)
|
||||||
|
pos_tensor = torch.arange(n_position).unsqueeze(-1).float()
|
||||||
|
sinusoid_table = pos_tensor * denominator
|
||||||
|
sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2])
|
||||||
|
sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2])
|
||||||
|
|
||||||
|
return sinusoid_table.unsqueeze(0)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x (Tensor): Tensor of shape (batch_size, pos_len, d_hid, ...)
|
||||||
|
"""
|
||||||
|
self.device = x.device
|
||||||
|
x = x + self.position_table[:, :x.size(1)].clone().detach()
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class TFDecoderLayer(nn.Module):
|
||||||
|
"""Transformer Decoder Layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model (int): The number of expected features
|
||||||
|
in the decoder inputs (default=512).
|
||||||
|
d_inner (int): The dimension of the feedforward
|
||||||
|
network model (default=256).
|
||||||
|
n_head (int): The number of heads in the
|
||||||
|
multiheadattention models (default=8).
|
||||||
|
d_k (int): Total number of features in key.
|
||||||
|
d_v (int): Total number of features in value.
|
||||||
|
dropout (float): Dropout layer on attn_output_weights.
|
||||||
|
qkv_bias (bool): Add bias in projection layer. Default: False.
|
||||||
|
act_cfg (dict): Activation cfg for feedforward module.
|
||||||
|
operation_order (tuple[str]): The execution order of operation
|
||||||
|
in transformer. Such as ('self_attn', 'norm', 'enc_dec_attn',
|
||||||
|
'norm', 'ffn', 'norm') or ('norm', 'self_attn', 'norm',
|
||||||
|
'enc_dec_attn', 'norm', 'ffn').
|
||||||
|
Default:None.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
d_model=512,
|
||||||
|
d_inner=256,
|
||||||
|
n_head=8,
|
||||||
|
d_k=64,
|
||||||
|
d_v=64,
|
||||||
|
dropout=0.1,
|
||||||
|
qkv_bias=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.norm3 = nn.LayerNorm(d_model)
|
||||||
|
|
||||||
|
self.self_attn = MultiHeadAttention(
|
||||||
|
n_head, d_model, d_k, d_v, dropout=dropout, qkv_bias=qkv_bias)
|
||||||
|
|
||||||
|
self.enc_attn = MultiHeadAttention(
|
||||||
|
n_head, d_model, d_k, d_v, dropout=dropout, qkv_bias=qkv_bias)
|
||||||
|
|
||||||
|
self.mlp = PositionwiseFeedForward(
|
||||||
|
d_model, d_inner, dropout=dropout)
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
dec_input,
|
||||||
|
enc_output,
|
||||||
|
self_attn_mask=None,
|
||||||
|
dec_enc_attn_mask=None):
|
||||||
|
dec_input_norm = self.norm1(dec_input)
|
||||||
|
dec_attn_out = self.self_attn(dec_input_norm, dec_input_norm,
|
||||||
|
dec_input_norm, self_attn_mask)
|
||||||
|
dec_attn_out += dec_input
|
||||||
|
|
||||||
|
enc_dec_attn_in = self.norm2(dec_attn_out)
|
||||||
|
enc_dec_attn_out = self.enc_attn(enc_dec_attn_in, enc_output,
|
||||||
|
enc_output, dec_enc_attn_mask)
|
||||||
|
enc_dec_attn_out += dec_attn_out
|
||||||
|
|
||||||
|
mlp_out = self.mlp(self.norm3(enc_dec_attn_out))
|
||||||
|
mlp_out += enc_dec_attn_out
|
||||||
|
|
||||||
|
return mlp_out
|
||||||
|
|
||||||
|
class NRTRDecoder(nn.Module):
|
||||||
|
"""Transformer Decoder block with self attention mechanism.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
n_layers (int): Number of attention layers.
|
||||||
|
d_embedding (int): Language embedding dimension.
|
||||||
|
n_head (int): Number of parallel attention heads.
|
||||||
|
d_k (int): Dimension of the key vector.
|
||||||
|
d_v (int): Dimension of the value vector.
|
||||||
|
d_model (int): Dimension :math:`D_m` of the input from previous model.
|
||||||
|
d_inner (int): Hidden dimension of feedforward layers.
|
||||||
|
n_position (int): Length of the positional encoding vector. Must be
|
||||||
|
greater than ``max_seq_len``.
|
||||||
|
dropout (float): Dropout rate.
|
||||||
|
num_classes (int): Number of output classes :math:`C`.
|
||||||
|
max_seq_len (int): Maximum output sequence length :math:`T`.
|
||||||
|
start_idx (int): The index of `<SOS>`.
|
||||||
|
padding_idx (int): The index of `<PAD>`.
|
||||||
|
init_cfg (dict or list[dict], optional): Initialization configs.
|
||||||
|
|
||||||
|
Warning:
|
||||||
|
This decoder will not predict the final class which is assumed to be
|
||||||
|
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
|
||||||
|
is also ignored by loss as specified in
|
||||||
|
:obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
n_layers=6,
|
||||||
|
d_embedding=512,
|
||||||
|
n_head=8,
|
||||||
|
d_k=64,
|
||||||
|
d_v=64,
|
||||||
|
d_model=512,
|
||||||
|
d_inner=256,
|
||||||
|
n_position=200,
|
||||||
|
dropout=0.1,
|
||||||
|
num_classes=93,
|
||||||
|
max_seq_len=40,
|
||||||
|
start_idx=1,
|
||||||
|
padding_idx=92,
|
||||||
|
return_confident=False,
|
||||||
|
end_idx=None,
|
||||||
|
**kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.padding_idx = padding_idx
|
||||||
|
self.start_idx = start_idx
|
||||||
|
self.max_seq_len = max_seq_len
|
||||||
|
|
||||||
|
self.trg_word_emb = nn.Embedding(
|
||||||
|
num_classes, d_embedding, padding_idx=padding_idx)
|
||||||
|
|
||||||
|
self.position_enc = PositionalEncoding(
|
||||||
|
d_embedding, n_position=n_position)
|
||||||
|
|
||||||
|
self.layer_stack = nn.ModuleList([
|
||||||
|
TFDecoderLayer(
|
||||||
|
d_model, d_inner, n_head, d_k, d_v, dropout=dropout, **kwargs)
|
||||||
|
for _ in range(n_layers)
|
||||||
|
])
|
||||||
|
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
||||||
|
|
||||||
|
pred_num_class = num_classes - 1 # ignore padding_idx
|
||||||
|
self.classifier = nn.Linear(d_model, pred_num_class)
|
||||||
|
|
||||||
|
self.return_confident = return_confident
|
||||||
|
self.end_idx = end_idx
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_pad_mask(seq, pad_idx):
|
||||||
|
|
||||||
|
return (seq != pad_idx).unsqueeze(-2)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_subsequent_mask(seq):
|
||||||
|
"""For masking out the subsequent info."""
|
||||||
|
len_s = seq.size(1)
|
||||||
|
subsequent_mask = 1 - torch.triu(
|
||||||
|
torch.ones((len_s, len_s), device=seq.device), diagonal=1)
|
||||||
|
subsequent_mask = subsequent_mask.unsqueeze(0).bool()
|
||||||
|
|
||||||
|
return subsequent_mask
|
||||||
|
|
||||||
|
def _attention(self, trg_seq, src, src_mask=None):
|
||||||
|
trg_embedding = self.trg_word_emb(trg_seq)
|
||||||
|
trg_pos_encoded = self.position_enc(trg_embedding)
|
||||||
|
trg_mask = self.get_pad_mask(
|
||||||
|
trg_seq,
|
||||||
|
pad_idx=self.padding_idx) & self.get_subsequent_mask(trg_seq)
|
||||||
|
output = trg_pos_encoded
|
||||||
|
for dec_layer in self.layer_stack:
|
||||||
|
output = dec_layer(
|
||||||
|
output,
|
||||||
|
src,
|
||||||
|
self_attn_mask=trg_mask,
|
||||||
|
dec_enc_attn_mask=src_mask)
|
||||||
|
output = self.layer_norm(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
def _get_mask(self, logit):
|
||||||
|
N, T, _ = logit.size()
|
||||||
|
mask = logit.new_ones((N, T))
|
||||||
|
|
||||||
|
return mask
|
||||||
|
|
||||||
|
def forward(self, out_enc):
|
||||||
|
src_mask = self._get_mask(out_enc)
|
||||||
|
N = out_enc.size(0)
|
||||||
|
init_target_seq = torch.full((N, self.max_seq_len + 1),
|
||||||
|
self.padding_idx,
|
||||||
|
device=out_enc.device,
|
||||||
|
dtype=torch.long)
|
||||||
|
# bsz * seq_len
|
||||||
|
init_target_seq[:, 0] = self.start_idx
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for step in range(0, self.max_seq_len):
|
||||||
|
decoder_output = self._attention(
|
||||||
|
trg_seq=init_target_seq,
|
||||||
|
src=out_enc,
|
||||||
|
src_mask=src_mask)
|
||||||
|
if self.return_confident:
|
||||||
|
step_result = torch.softmax(self.classifier(decoder_output[:, step, :]), -1)
|
||||||
|
next_step_init = step_result.argmax(-1)
|
||||||
|
init_target_seq[:, step + 1] = next_step_init
|
||||||
|
if next_step_init.min() >= self.end_idx:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
step_result = self.classifier(decoder_output[:, step, :]).argmax(-1)
|
||||||
|
init_target_seq[:, step + 1] = step_result
|
||||||
|
if step_result.min() >= self.end_idx:
|
||||||
|
break
|
||||||
|
|
||||||
|
outputs.append(step_result)
|
||||||
|
|
||||||
|
outputs = torch.stack(outputs, dim=1)
|
||||||
|
|
||||||
|
return outputs
|
317
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/encoder.py
vendored
Normal file
317
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/encoder.py
vendored
Normal file
@ -0,0 +1,317 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
from .conv import ConvModule
|
||||||
|
|
||||||
|
|
||||||
|
class LocalityAwareFeedforward(nn.Module):
|
||||||
|
"""Locality-aware feedforward layer in SATRN, see `SATRN.
|
||||||
|
|
||||||
|
<https://arxiv.org/abs/1910.04396>`_
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
d_in,
|
||||||
|
d_hid,
|
||||||
|
dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.conv1 = ConvModule(
|
||||||
|
d_in,
|
||||||
|
d_hid,
|
||||||
|
kernel_size=1,
|
||||||
|
padding=0,
|
||||||
|
bias=False,
|
||||||
|
norm_cfg=dict(type='BN'),
|
||||||
|
act_cfg=dict(type='ReLU'))
|
||||||
|
|
||||||
|
self.depthwise_conv = ConvModule(
|
||||||
|
d_hid,
|
||||||
|
d_hid,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
bias=False,
|
||||||
|
groups=d_hid,
|
||||||
|
norm_cfg=dict(type='BN'),
|
||||||
|
act_cfg=dict(type='ReLU'))
|
||||||
|
|
||||||
|
self.conv2 = ConvModule(
|
||||||
|
d_hid,
|
||||||
|
d_in,
|
||||||
|
kernel_size=1,
|
||||||
|
padding=0,
|
||||||
|
bias=False,
|
||||||
|
norm_cfg=dict(type='BN'),
|
||||||
|
act_cfg=dict(type='ReLU'))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.depthwise_conv(x)
|
||||||
|
x = self.conv2(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledDotProductAttention(nn.Module):
|
||||||
|
"""Scaled Dot-Product Attention Module. This code is adopted from
|
||||||
|
https://github.com/jadore801120/attention-is-all-you-need-pytorch.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
temperature (float): The scale factor for softmax input.
|
||||||
|
attn_dropout (float): Dropout layer on attn_output_weights.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, temperature, attn_dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.temperature = temperature
|
||||||
|
self.dropout = nn.Dropout(attn_dropout)
|
||||||
|
|
||||||
|
def forward(self, q, k, v, mask=None):
|
||||||
|
|
||||||
|
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
attn = attn.masked_fill(mask == 0, float('-inf'))
|
||||||
|
|
||||||
|
attn = self.dropout(F.softmax(attn, dim=-1))
|
||||||
|
output = torch.matmul(attn, v)
|
||||||
|
|
||||||
|
return output, attn
|
||||||
|
|
||||||
|
|
||||||
|
class MultiHeadAttention(nn.Module):
|
||||||
|
"""Multi-Head Attention module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
n_head (int): The number of heads in the
|
||||||
|
multiheadattention models (default=8).
|
||||||
|
d_model (int): The number of expected features
|
||||||
|
in the decoder inputs (default=512).
|
||||||
|
d_k (int): Total number of features in key.
|
||||||
|
d_v (int): Total number of features in value.
|
||||||
|
dropout (float): Dropout layer on attn_output_weights.
|
||||||
|
qkv_bias (bool): Add bias in projection layer. Default: False.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
n_head=8,
|
||||||
|
d_model=512,
|
||||||
|
d_k=64,
|
||||||
|
d_v=64,
|
||||||
|
dropout=0.1,
|
||||||
|
qkv_bias=False):
|
||||||
|
super().__init__()
|
||||||
|
self.n_head = n_head
|
||||||
|
self.d_k = d_k
|
||||||
|
self.d_v = d_v
|
||||||
|
|
||||||
|
self.dim_k = n_head * d_k
|
||||||
|
self.dim_v = n_head * d_v
|
||||||
|
|
||||||
|
self.linear_q = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias)
|
||||||
|
self.linear_k = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias)
|
||||||
|
self.linear_v = nn.Linear(self.dim_v, self.dim_v, bias=qkv_bias)
|
||||||
|
|
||||||
|
self.attention = ScaledDotProductAttention(d_k**0.5, dropout)
|
||||||
|
|
||||||
|
self.fc = nn.Linear(self.dim_v, d_model, bias=qkv_bias)
|
||||||
|
self.proj_drop = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
def forward(self, q, k, v, mask=None):
|
||||||
|
batch_size, len_q, _ = q.size()
|
||||||
|
_, len_k, _ = k.size()
|
||||||
|
|
||||||
|
q = self.linear_q(q).view(batch_size, len_q, self.n_head, self.d_k)
|
||||||
|
k = self.linear_k(k).view(batch_size, len_k, self.n_head, self.d_k)
|
||||||
|
v = self.linear_v(v).view(batch_size, len_k, self.n_head, self.d_v)
|
||||||
|
|
||||||
|
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
if mask.dim() == 3:
|
||||||
|
mask = mask.unsqueeze(1)
|
||||||
|
elif mask.dim() == 2:
|
||||||
|
mask = mask.unsqueeze(1).unsqueeze(1)
|
||||||
|
|
||||||
|
attn_out, _ = self.attention(q, k, v, mask=mask)
|
||||||
|
|
||||||
|
attn_out = attn_out.transpose(1, 2).contiguous().view(
|
||||||
|
batch_size, len_q, self.dim_v)
|
||||||
|
|
||||||
|
attn_out = self.fc(attn_out)
|
||||||
|
attn_out = self.proj_drop(attn_out)
|
||||||
|
|
||||||
|
return attn_out
|
||||||
|
|
||||||
|
|
||||||
|
class SatrnEncoderLayer(nn.Module):
|
||||||
|
""""""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
d_model=512,
|
||||||
|
d_inner=512,
|
||||||
|
n_head=8,
|
||||||
|
d_k=64,
|
||||||
|
d_v=64,
|
||||||
|
dropout=0.1,
|
||||||
|
qkv_bias=False):
|
||||||
|
super().__init__()
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.attn = MultiHeadAttention(
|
||||||
|
n_head, d_model, d_k, d_v, qkv_bias=qkv_bias, dropout=dropout)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.feed_forward = LocalityAwareFeedforward(
|
||||||
|
d_model, d_inner, dropout=dropout)
|
||||||
|
|
||||||
|
def forward(self, x, h, w, mask=None):
|
||||||
|
n, hw, c = x.size()
|
||||||
|
residual = x
|
||||||
|
x = self.norm1(x)
|
||||||
|
x = residual + self.attn(x, x, x, mask)
|
||||||
|
residual = x
|
||||||
|
x = self.norm2(x)
|
||||||
|
x = x.transpose(1, 2).contiguous().view(n, c, h, w)
|
||||||
|
x = self.feed_forward(x)
|
||||||
|
x = x.view(n, c, hw).transpose(1, 2)
|
||||||
|
x = residual + x
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Adaptive2DPositionalEncoding(nn.Module):
|
||||||
|
"""Implement Adaptive 2D positional encoder for SATRN, see
|
||||||
|
`SATRN <https://arxiv.org/abs/1910.04396>`_
|
||||||
|
Modified from https://github.com/Media-Smart/vedastr
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
Args:
|
||||||
|
d_hid (int): Dimensions of hidden layer.
|
||||||
|
n_height (int): Max height of the 2D feature output.
|
||||||
|
n_width (int): Max width of the 2D feature output.
|
||||||
|
dropout (int): Size of hidden layers of the model.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
d_hid=512,
|
||||||
|
n_height=100,
|
||||||
|
n_width=100,
|
||||||
|
dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
h_position_encoder = self._get_sinusoid_encoding_table(n_height, d_hid)
|
||||||
|
h_position_encoder = h_position_encoder.transpose(0, 1)
|
||||||
|
h_position_encoder = h_position_encoder.view(1, d_hid, n_height, 1)
|
||||||
|
|
||||||
|
w_position_encoder = self._get_sinusoid_encoding_table(n_width, d_hid)
|
||||||
|
w_position_encoder = w_position_encoder.transpose(0, 1)
|
||||||
|
w_position_encoder = w_position_encoder.view(1, d_hid, 1, n_width)
|
||||||
|
|
||||||
|
self.register_buffer('h_position_encoder', h_position_encoder)
|
||||||
|
self.register_buffer('w_position_encoder', w_position_encoder)
|
||||||
|
|
||||||
|
self.h_scale = self.scale_factor_generate(d_hid)
|
||||||
|
self.w_scale = self.scale_factor_generate(d_hid)
|
||||||
|
self.pool = nn.AdaptiveAvgPool2d(1)
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
|
||||||
|
def _get_sinusoid_encoding_table(self, n_position, d_hid):
|
||||||
|
"""Sinusoid position encoding table."""
|
||||||
|
denominator = torch.Tensor([
|
||||||
|
1.0 / np.power(10000, 2 * (hid_j // 2) / d_hid)
|
||||||
|
for hid_j in range(d_hid)
|
||||||
|
])
|
||||||
|
denominator = denominator.view(1, -1)
|
||||||
|
pos_tensor = torch.arange(n_position).unsqueeze(-1).float()
|
||||||
|
sinusoid_table = pos_tensor * denominator
|
||||||
|
sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2])
|
||||||
|
sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2])
|
||||||
|
|
||||||
|
return sinusoid_table
|
||||||
|
|
||||||
|
def scale_factor_generate(self, d_hid):
|
||||||
|
scale_factor = nn.Sequential(
|
||||||
|
nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.ReLU(inplace=True),
|
||||||
|
nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.Sigmoid())
|
||||||
|
|
||||||
|
return scale_factor
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
b, c, h, w = x.size()
|
||||||
|
|
||||||
|
avg_pool = self.pool(x)
|
||||||
|
|
||||||
|
h_pos_encoding = \
|
||||||
|
self.h_scale(avg_pool) * self.h_position_encoder[:, :, :h, :]
|
||||||
|
w_pos_encoding = \
|
||||||
|
self.w_scale(avg_pool) * self.w_position_encoder[:, :, :, :w]
|
||||||
|
|
||||||
|
out = x + h_pos_encoding + w_pos_encoding
|
||||||
|
|
||||||
|
out = self.dropout(out)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class SatrnEncoder(nn.Module):
|
||||||
|
"""Implement encoder for SATRN, see `SATRN.
|
||||||
|
|
||||||
|
<https://arxiv.org/abs/1910.04396>`_.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
n_layers (int): Number of attention layers.
|
||||||
|
n_head (int): Number of parallel attention heads.
|
||||||
|
d_k (int): Dimension of the key vector.
|
||||||
|
d_v (int): Dimension of the value vector.
|
||||||
|
d_model (int): Dimension :math:`D_m` of the input from previous model.
|
||||||
|
n_position (int): Length of the positional encoding vector. Must be
|
||||||
|
greater than ``max_seq_len``.
|
||||||
|
d_inner (int): Hidden dimension of feedforward layers.
|
||||||
|
dropout (float): Dropout rate.
|
||||||
|
init_cfg (dict or list[dict], optional): Initialization configs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
n_layers=12,
|
||||||
|
n_head=8,
|
||||||
|
d_k=64,
|
||||||
|
d_v=64,
|
||||||
|
d_model=512,
|
||||||
|
n_position=100,
|
||||||
|
d_inner=256,
|
||||||
|
dropout=0.1,
|
||||||
|
**kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.position_enc = Adaptive2DPositionalEncoding(
|
||||||
|
d_hid=d_model,
|
||||||
|
n_height=n_position,
|
||||||
|
n_width=n_position,
|
||||||
|
dropout=dropout)
|
||||||
|
self.layer_stack = nn.ModuleList([
|
||||||
|
SatrnEncoderLayer(
|
||||||
|
d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
|
||||||
|
for _ in range(n_layers)
|
||||||
|
])
|
||||||
|
self.layer_norm = nn.LayerNorm(d_model)
|
||||||
|
|
||||||
|
def forward(self, feat):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
feat (Tensor): Feature tensor of shape :math:`(N, D_m, H, W)`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: A tensor of shape :math:`(N, T, D_m)`.
|
||||||
|
"""
|
||||||
|
feat = feat + self.position_enc(feat)
|
||||||
|
n, c, h, w = feat.size()
|
||||||
|
mask = feat.new_zeros((n, h, w))
|
||||||
|
mask[:,:,:w] = 1
|
||||||
|
|
||||||
|
mask = mask.view(n, h * w)
|
||||||
|
feat = feat.view(n, c, h * w)
|
||||||
|
|
||||||
|
output = feat.permute(0, 2, 1).contiguous()
|
||||||
|
for enc_layer in self.layer_stack:
|
||||||
|
output = enc_layer(output, h, w, mask)
|
||||||
|
output = self.layer_norm(output)
|
||||||
|
|
||||||
|
return output
|
57
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/factory.py
vendored
Normal file
57
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/factory.py
vendored
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import colorama
|
||||||
|
import hashlib
|
||||||
|
|
||||||
|
def sha256sum(filename):
|
||||||
|
h = hashlib.sha256()
|
||||||
|
b = bytearray(128*1024)
|
||||||
|
mv = memoryview(b)
|
||||||
|
with open(filename, 'rb', buffering=0) as f:
|
||||||
|
for n in iter(lambda : f.readinto(mv), 0):
|
||||||
|
h.update(mv[:n])
|
||||||
|
return h.hexdigest()
|
||||||
|
|
||||||
|
|
||||||
|
online_model_factory = {
|
||||||
|
'satrn-lite-general-pretrain-20230106': {
|
||||||
|
'url': 'https://github.com/moewiee/satrn-model-factory/raw/main/jxqhbem4to.pth',
|
||||||
|
'hash': 'b0069a72bf6fc080ad5d431d5ce650c3bfbab535141adef1631fce331cb1471c'},
|
||||||
|
'satrn-lite-captcha-finetune-20230108': {
|
||||||
|
'url': 'https://github.com/moewiee/satrn-model-factory/raw/main/l27vitogmc.pth',
|
||||||
|
'hash': 'efcbcf2955b6b21125b073f83828d2719e908c7303b0d9901e94be5a8efba916'},
|
||||||
|
'satrn-lite-handwritten-finetune-20230108': {
|
||||||
|
'url': 'https://github.com/moewiee/satrn-model-factory/raw/main/lj9gkwelns.pth',
|
||||||
|
'hash': 'bccd8e985b131fcd4701114af5ceaef098f2eac50654bbb1d828e7f829e711dd'},
|
||||||
|
}
|
||||||
|
|
||||||
|
__hub_available_versions__ = online_model_factory.keys()
|
||||||
|
|
||||||
|
def _get(version):
|
||||||
|
use_online = version in __hub_available_versions__
|
||||||
|
|
||||||
|
if not use_online and not os.path.exists(version):
|
||||||
|
raise ValueError(f'Model version {version} not found online and not found local.')
|
||||||
|
|
||||||
|
hub_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'hub')
|
||||||
|
if not os.path.exists(hub_path):
|
||||||
|
os.makedirs(hub_path)
|
||||||
|
if use_online:
|
||||||
|
version_url = online_model_factory[version]['url']
|
||||||
|
file_path = os.path.join(hub_path, os.path.basename(version_url))
|
||||||
|
else:
|
||||||
|
file_path = os.path.join(hub_path, os.path.basename(version))
|
||||||
|
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
if use_online:
|
||||||
|
os.system(f'wget -O {file_path} {version_url}')
|
||||||
|
assert os.path.exists(file_path), \
|
||||||
|
colorama.Fore.RED + 'wget failed while trying to retrieve from hub.' + colorama.Style.RESET_ALL
|
||||||
|
downloaded_hash = sha256sum(file_path)
|
||||||
|
if downloaded_hash != online_model_factory[version]['hash']:
|
||||||
|
os.remove(file_path)
|
||||||
|
raise ValueError(colorama.Fore.RED + 'sha256 hash doesnt match for version retrieved from hub.' + colorama.Style.RESET_ALL)
|
||||||
|
else:
|
||||||
|
shutil.copy2(version, file_path)
|
||||||
|
|
||||||
|
return file_path
|
78
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/fp16_utils.py
vendored
Normal file
78
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/fp16_utils.py
vendored
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from collections import abc
|
||||||
|
|
||||||
|
|
||||||
|
def cast_tensor_type(inputs, src_type, dst_type):
|
||||||
|
"""Recursively convert Tensor in inputs from src_type to dst_type.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs: Inputs that to be casted.
|
||||||
|
src_type (torch.dtype): Source type..
|
||||||
|
dst_type (torch.dtype): Destination type.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The same type with inputs, but all contained Tensors have been cast.
|
||||||
|
"""
|
||||||
|
if isinstance(inputs, nn.Module):
|
||||||
|
return inputs
|
||||||
|
elif isinstance(inputs, torch.Tensor):
|
||||||
|
return inputs.to(dst_type)
|
||||||
|
elif isinstance(inputs, str):
|
||||||
|
return inputs
|
||||||
|
elif isinstance(inputs, np.ndarray):
|
||||||
|
return inputs
|
||||||
|
elif isinstance(inputs, abc.Mapping):
|
||||||
|
return type(inputs)({
|
||||||
|
k: cast_tensor_type(v, src_type, dst_type)
|
||||||
|
for k, v in inputs.items()
|
||||||
|
})
|
||||||
|
elif isinstance(inputs, abc.Iterable):
|
||||||
|
return type(inputs)(
|
||||||
|
cast_tensor_type(item, src_type, dst_type) for item in inputs)
|
||||||
|
else:
|
||||||
|
return inputs
|
||||||
|
|
||||||
|
|
||||||
|
def patch_forward_method(func, src_type, dst_type, convert_output=True):
|
||||||
|
"""Patch the forward method of a module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
func (callable): The original forward method.
|
||||||
|
src_type (torch.dtype): Type of input arguments to be converted from.
|
||||||
|
dst_type (torch.dtype): Type of input arguments to be converted to.
|
||||||
|
convert_output (bool): Whether to convert the output back to src_type.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
callable: The patched forward method.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def new_forward(*args, **kwargs):
|
||||||
|
output = func(*cast_tensor_type(args, src_type, dst_type),
|
||||||
|
**cast_tensor_type(kwargs, src_type, dst_type))
|
||||||
|
if convert_output:
|
||||||
|
output = cast_tensor_type(output, dst_type, src_type)
|
||||||
|
return output
|
||||||
|
|
||||||
|
return new_forward
|
||||||
|
|
||||||
|
|
||||||
|
def patch_norm_fp32(module):
|
||||||
|
"""Recursively convert normalization layers from FP16 to FP32.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
module (nn.Module): The modules to be converted in FP16.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
nn.Module: The converted module, the normalization layers have been
|
||||||
|
converted to FP32.
|
||||||
|
"""
|
||||||
|
if isinstance(module, (nn.modules.batchnorm._BatchNorm, nn.GroupNorm)):
|
||||||
|
module.float()
|
||||||
|
if isinstance(module, nn.GroupNorm) or torch.__version__ < '1.3':
|
||||||
|
module.forward = patch_forward_method(module.forward, torch.half,
|
||||||
|
torch.float)
|
||||||
|
for child in module.children():
|
||||||
|
patch_norm_fp32(child)
|
||||||
|
return module
|
33
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/transform.py
vendored
Normal file
33
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/transform.py
vendored
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
import torchvision.transforms.functional as TF
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
class DataPipelineSATRN:
|
||||||
|
def __init__(self,
|
||||||
|
resize_height,
|
||||||
|
resize_width,
|
||||||
|
norm_mean,
|
||||||
|
norm_std,
|
||||||
|
device='cpu'):
|
||||||
|
self.resize_height = resize_height
|
||||||
|
self.resize_width = resize_width
|
||||||
|
self.norm_mean = norm_mean
|
||||||
|
self.norm_std = norm_std
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def __call__(self, imgs):
|
||||||
|
if not isinstance(imgs, list):
|
||||||
|
imgs = [imgs]
|
||||||
|
datas = []
|
||||||
|
for img in imgs:
|
||||||
|
if isinstance(img, str):
|
||||||
|
img = cv2.imread(img)
|
||||||
|
data = torch.from_numpy(cv2.resize(img, (self.resize_width, self.resize_height), interpolation=cv2.INTER_LINEAR))
|
||||||
|
datas.append(data)
|
||||||
|
|
||||||
|
data = torch.stack(datas, dim=0)
|
||||||
|
data = data.to(self.device)
|
||||||
|
data = data.float().div_(255.).permute((0,3,1,2))
|
||||||
|
TF.normalize(data, mean=self.norm_mean, std=self.norm_std, inplace=True)
|
||||||
|
|
||||||
|
return data.half() if self.device != 'cpu' else data
|
1
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/version.py
vendored
Normal file
1
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/sdsvtr/version.py
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
__version__ = '0.0.5'
|
187
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/setup.py
vendored
Normal file
187
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/setup.py
vendored
Normal file
@ -0,0 +1,187 @@
|
|||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import shutil
|
||||||
|
import sys
|
||||||
|
import warnings
|
||||||
|
from setuptools import find_packages, setup
|
||||||
|
|
||||||
|
|
||||||
|
def readme():
|
||||||
|
with open('README.md', encoding='utf-8') as f:
|
||||||
|
content = f.read()
|
||||||
|
return content
|
||||||
|
|
||||||
|
|
||||||
|
version_file = 'sdsvtr/version.py'
|
||||||
|
is_windows = sys.platform == 'win32'
|
||||||
|
|
||||||
|
|
||||||
|
def add_mim_extention():
|
||||||
|
"""Add extra files that are required to support MIM into the package.
|
||||||
|
|
||||||
|
These files will be added by creating a symlink to the originals if the
|
||||||
|
package is installed in `editable` mode (e.g. pip install -e .), or by
|
||||||
|
copying from the originals otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# parse installment mode
|
||||||
|
if 'develop' in sys.argv:
|
||||||
|
# installed by `pip install -e .`
|
||||||
|
mode = 'symlink'
|
||||||
|
elif 'sdist' in sys.argv or 'bdist_wheel' in sys.argv:
|
||||||
|
# installed by `pip install .`
|
||||||
|
# or create source distribution by `python setup.py sdist`
|
||||||
|
mode = 'copy'
|
||||||
|
else:
|
||||||
|
return
|
||||||
|
|
||||||
|
filenames = ['tools', 'configs', 'model-index.yml']
|
||||||
|
repo_path = osp.dirname(__file__)
|
||||||
|
mim_path = osp.join(repo_path, 'mmocr', '.mim')
|
||||||
|
os.makedirs(mim_path, exist_ok=True)
|
||||||
|
|
||||||
|
for filename in filenames:
|
||||||
|
if osp.exists(filename):
|
||||||
|
src_path = osp.join(repo_path, filename)
|
||||||
|
tar_path = osp.join(mim_path, filename)
|
||||||
|
|
||||||
|
if osp.isfile(tar_path) or osp.islink(tar_path):
|
||||||
|
os.remove(tar_path)
|
||||||
|
elif osp.isdir(tar_path):
|
||||||
|
shutil.rmtree(tar_path)
|
||||||
|
|
||||||
|
if mode == 'symlink':
|
||||||
|
src_relpath = osp.relpath(src_path, osp.dirname(tar_path))
|
||||||
|
try:
|
||||||
|
os.symlink(src_relpath, tar_path)
|
||||||
|
except OSError:
|
||||||
|
# Creating a symbolic link on windows may raise an
|
||||||
|
# `OSError: [WinError 1314]` due to privilege. If
|
||||||
|
# the error happens, the src file will be copied
|
||||||
|
mode = 'copy'
|
||||||
|
warnings.warn(
|
||||||
|
f'Failed to create a symbolic link for {src_relpath}, '
|
||||||
|
f'and it will be copied to {tar_path}')
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if mode == 'copy':
|
||||||
|
if osp.isfile(src_path):
|
||||||
|
shutil.copyfile(src_path, tar_path)
|
||||||
|
elif osp.isdir(src_path):
|
||||||
|
shutil.copytree(src_path, tar_path)
|
||||||
|
else:
|
||||||
|
warnings.warn(f'Cannot copy file {src_path}.')
|
||||||
|
else:
|
||||||
|
raise ValueError(f'Invalid mode {mode}')
|
||||||
|
|
||||||
|
|
||||||
|
def get_version():
|
||||||
|
with open(version_file, 'r') as f:
|
||||||
|
exec(compile(f.read(), version_file, 'exec'))
|
||||||
|
import sys
|
||||||
|
|
||||||
|
# return short version for sdist
|
||||||
|
if 'sdist' in sys.argv or 'bdist_wheel' in sys.argv:
|
||||||
|
return locals()['short_version']
|
||||||
|
else:
|
||||||
|
return locals()['__version__']
|
||||||
|
|
||||||
|
|
||||||
|
def parse_requirements(fname='requirements.txt', with_version=True):
|
||||||
|
"""Parse the package dependencies listed in a requirements file but strip
|
||||||
|
specific version information.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fname (str): Path to requirements file.
|
||||||
|
with_version (bool, default=False): If True, include version specs.
|
||||||
|
Returns:
|
||||||
|
info (list[str]): List of requirements items.
|
||||||
|
CommandLine:
|
||||||
|
python -c "import setup; print(setup.parse_requirements())"
|
||||||
|
"""
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from os.path import exists
|
||||||
|
require_fpath = fname
|
||||||
|
|
||||||
|
def parse_line(line):
|
||||||
|
"""Parse information from a line in a requirements text file."""
|
||||||
|
if line.startswith('-r '):
|
||||||
|
# Allow specifying requirements in other files
|
||||||
|
target = line.split(' ')[1]
|
||||||
|
for info in parse_require_file(target):
|
||||||
|
yield info
|
||||||
|
else:
|
||||||
|
info = {'line': line}
|
||||||
|
if line.startswith('-e '):
|
||||||
|
info['package'] = line.split('#egg=')[1]
|
||||||
|
else:
|
||||||
|
# Remove versioning from the package
|
||||||
|
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
|
||||||
|
parts = re.split(pat, line, maxsplit=1)
|
||||||
|
parts = [p.strip() for p in parts]
|
||||||
|
|
||||||
|
info['package'] = parts[0]
|
||||||
|
if len(parts) > 1:
|
||||||
|
op, rest = parts[1:]
|
||||||
|
if ';' in rest:
|
||||||
|
# Handle platform specific dependencies
|
||||||
|
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
|
||||||
|
version, platform_deps = map(str.strip,
|
||||||
|
rest.split(';'))
|
||||||
|
info['platform_deps'] = platform_deps
|
||||||
|
else:
|
||||||
|
version = rest # NOQA
|
||||||
|
info['version'] = (op, version)
|
||||||
|
yield info
|
||||||
|
|
||||||
|
def parse_require_file(fpath):
|
||||||
|
with open(fpath, 'r') as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
line = line.strip()
|
||||||
|
if line and not line.startswith('#'):
|
||||||
|
for info in parse_line(line):
|
||||||
|
yield info
|
||||||
|
|
||||||
|
def gen_packages_items():
|
||||||
|
if exists(require_fpath):
|
||||||
|
for info in parse_require_file(require_fpath):
|
||||||
|
parts = [info['package']]
|
||||||
|
if with_version and 'version' in info:
|
||||||
|
parts.extend(info['version'])
|
||||||
|
if not sys.version.startswith('3.4'):
|
||||||
|
# apparently package_deps are broken in 3.4
|
||||||
|
platform_deps = info.get('platform_deps')
|
||||||
|
if platform_deps is not None:
|
||||||
|
parts.append(';' + platform_deps)
|
||||||
|
item = ''.join(parts)
|
||||||
|
yield item
|
||||||
|
|
||||||
|
packages = list(gen_packages_items())
|
||||||
|
return packages
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
setup(
|
||||||
|
name='sdsvtr',
|
||||||
|
version=get_version(),
|
||||||
|
description='SDSV OCR Team Text Recognizer',
|
||||||
|
long_description=readme(),
|
||||||
|
long_description_content_type='text/markdown',
|
||||||
|
packages=find_packages(exclude=('configs', 'tools', 'demo')),
|
||||||
|
include_package_data=True,
|
||||||
|
url='https://github.com/open-mmlab/mmocr',
|
||||||
|
classifiers=[
|
||||||
|
'Development Status :: 4 - Beta',
|
||||||
|
'License :: OSI Approved :: Apache Software License',
|
||||||
|
'Operating System :: OS Independent',
|
||||||
|
'Programming Language :: Python :: 3',
|
||||||
|
'Programming Language :: Python :: 3.6',
|
||||||
|
'Programming Language :: Python :: 3.7',
|
||||||
|
'Programming Language :: Python :: 3.8',
|
||||||
|
'Programming Language :: Python :: 3.9',
|
||||||
|
],
|
||||||
|
license='Apache License 2.0',
|
||||||
|
install_requires=parse_requirements('requirements.txt'),
|
||||||
|
zip_safe=False)
|
12
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/test.py
vendored
Normal file
12
cope2n-ai-fi/modules/_sdsvkvu/sdsvkvu/externals/basic_ocr/externals/sdsvtr/test.py
vendored
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
import numpy as np
|
||||||
|
from sdsvtr import StandaloneSATRNRunner
|
||||||
|
runner = StandaloneSATRNRunner(version='satrn-lite-general-pretrain-20230106', return_confident=False, device='cuda:1')
|
||||||
|
|
||||||
|
dummy_list = [np.ndarray((32,128,3)) for _ in range(100)]
|
||||||
|
bs = 32
|
||||||
|
|
||||||
|
all_results = []
|
||||||
|
while len(dummy_list) > 0:
|
||||||
|
dummy_batch = dummy_list[:bs]
|
||||||
|
dummy_list = dummy_list[bs:]
|
||||||
|
all_results += runner(dummy_batch)
|
118
cope2n-api/fwd_api/migrations/0001_initial.py
Executable file
118
cope2n-api/fwd_api/migrations/0001_initial.py
Executable file
@ -0,0 +1,118 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-04-05 07:19
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
import django.db.models.deletion
|
||||||
|
import django.utils.timezone
|
||||||
|
import fwd_api.models.fields.EncryptedCharField
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
initial = True
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.CreateModel(
|
||||||
|
name='OcrTemplate',
|
||||||
|
fields=[
|
||||||
|
('id', models.AutoField(primary_key=True, serialize=False)),
|
||||||
|
('name', models.CharField(max_length=300)),
|
||||||
|
('status', models.IntegerField()),
|
||||||
|
('file_path', fwd_api.models.fields.EncryptedCharField.EncryptedCharField(max_length=500, null=True)),
|
||||||
|
('file_name', fwd_api.models.fields.EncryptedCharField.EncryptedCharField(max_length=500, null=True)),
|
||||||
|
('created_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('updated_at', models.DateTimeField(auto_now=True)),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
migrations.CreateModel(
|
||||||
|
name='PricingPlan',
|
||||||
|
fields=[
|
||||||
|
('id', models.AutoField(primary_key=True, serialize=False)),
|
||||||
|
('code', models.CharField(max_length=300)),
|
||||||
|
('token_limitations', models.IntegerField(default=0)),
|
||||||
|
('duration', models.IntegerField(default=0)),
|
||||||
|
('created_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('updated_at', models.DateTimeField(auto_now=True)),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
migrations.CreateModel(
|
||||||
|
name='Subscription',
|
||||||
|
fields=[
|
||||||
|
('id', models.AutoField(primary_key=True, serialize=False)),
|
||||||
|
('current_token', models.IntegerField(default=0)),
|
||||||
|
('limit_token', models.IntegerField(default=0)),
|
||||||
|
('status', models.IntegerField(default=0)),
|
||||||
|
('start_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('expired_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('created_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('updated_at', models.DateTimeField(auto_now=True)),
|
||||||
|
('pricing_plan', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='fwd_api.pricingplan')),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
migrations.CreateModel(
|
||||||
|
name='SubscriptionRequest',
|
||||||
|
fields=[
|
||||||
|
('id', models.AutoField(primary_key=True, serialize=False)),
|
||||||
|
('pages', models.IntegerField()),
|
||||||
|
('doc_type', models.CharField(max_length=100)),
|
||||||
|
('request_id', models.CharField(max_length=200)),
|
||||||
|
('process_type', models.CharField(max_length=200)),
|
||||||
|
('provider_code', models.CharField(default='Guest', max_length=200)),
|
||||||
|
('predict_result', models.JSONField(null=True)),
|
||||||
|
('status', models.IntegerField()),
|
||||||
|
('created_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('updated_at', models.DateTimeField(auto_now=True)),
|
||||||
|
('subscription', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='fwd_api.subscription')),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
migrations.CreateModel(
|
||||||
|
name='UserProfile',
|
||||||
|
fields=[
|
||||||
|
('id', models.AutoField(primary_key=True, serialize=False)),
|
||||||
|
('full_name', models.CharField(max_length=100)),
|
||||||
|
('sync_id', models.CharField(max_length=100)),
|
||||||
|
('provider_id', models.CharField(default='Ctel', max_length=100)),
|
||||||
|
('current_total_pages', models.IntegerField(default=0)),
|
||||||
|
('limit_total_pages', models.IntegerField(default=0)),
|
||||||
|
('status', models.IntegerField(default=0)),
|
||||||
|
('created_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('updated_at', models.DateTimeField(auto_now=True)),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
migrations.CreateModel(
|
||||||
|
name='SubscriptionRequestFile',
|
||||||
|
fields=[
|
||||||
|
('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
|
||||||
|
('file_name', models.CharField(default=None, max_length=300)),
|
||||||
|
('file_path', fwd_api.models.fields.EncryptedCharField.EncryptedCharField(default=None, max_length=500)),
|
||||||
|
('file_category', models.CharField(default='Origin', max_length=200)),
|
||||||
|
('created_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('updated_at', models.DateTimeField(auto_now=True)),
|
||||||
|
('request', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='files', to='fwd_api.subscriptionrequest')),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
migrations.AddField(
|
||||||
|
model_name='subscription',
|
||||||
|
name='user',
|
||||||
|
field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='fwd_api.userprofile'),
|
||||||
|
),
|
||||||
|
migrations.CreateModel(
|
||||||
|
name='OcrTemplateBox',
|
||||||
|
fields=[
|
||||||
|
('id', models.AutoField(primary_key=True, serialize=False)),
|
||||||
|
('name', models.CharField(max_length=300, null=True)),
|
||||||
|
('type', models.CharField(max_length=100)),
|
||||||
|
('coordinates', models.CharField(max_length=200)),
|
||||||
|
('created_at', models.DateTimeField(default=django.utils.timezone.now)),
|
||||||
|
('updated_at', models.DateTimeField(auto_now=True)),
|
||||||
|
('template', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='fwd_api.ocrtemplate')),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
migrations.AddField(
|
||||||
|
model_name='ocrtemplate',
|
||||||
|
name='subscription',
|
||||||
|
field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='fwd_api.subscription'),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,28 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:10
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0001_initial'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AddField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL6ad3c98077bf4f9d80514d73219f24d1', max_length=300),
|
||||||
|
),
|
||||||
|
migrations.AddField(
|
||||||
|
model_name='userprofile',
|
||||||
|
name='email',
|
||||||
|
field=models.CharField(max_length=200, null=True),
|
||||||
|
),
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='userprofile',
|
||||||
|
name='full_name',
|
||||||
|
field=models.CharField(max_length=200),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0003_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0003_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:16
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0002_subscriptionrequestfile_code_userprofile_email_and_more'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL6cdfa631c89d41adb8263d8520732ea6', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0004_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0004_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:17
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0003_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa095ae5ffa3f490bab474c4f2e66a1ba', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0005_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0005_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:26
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0004_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL80569683e66148cd8aaa53a5ff622615', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0006_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0006_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:27
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0005_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL4a84b7636cfe4db39cd10fbd5a77c085', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0007_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0007_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:28
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0006_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL45b8e408ff1c4e9e8794b77e78437699', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0008_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0008_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:30
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0007_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL7a628e80e45e4c3ea09c5b90054045aa', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0009_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0009_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:34
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0008_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa7745c2091c84eb29b57e5344bf6cb31', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0010_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0010_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:44
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0009_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILaff0fce70fb04779825ba49b86a65ed3', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0011_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0011_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 08:49
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0010_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL945a1575172d45f0a680ddc178798575', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0012_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0012_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 09:03
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0011_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILf7d18096cb3746dda5e943f06130591a', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0013_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0013_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 09:05
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0012_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa1b36d470eb74a0cb49abc006b7a45d4', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0014_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0014_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 09:09
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0013_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILd7e2686ad2294812b8e39028dbad95d0', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0015_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0015_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 09:54
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0014_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILc8d66f9a9820478dbeff39a7f1bdaae7', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0016_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0016_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 10:12
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0015_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILfe1b5576bb7f4b1ebbc9eff4444048f3', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0017_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0017_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-13 12:30
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0016_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILca899ac19c814b5e8abb6fd739950b48', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0018_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0018_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-16 06:01
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0017_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL679f7b306fa041518d362290db1109ad', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0019_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0019_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-16 07:26
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0018_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL9125f3f02a994758b5819d635cf354ed', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0020_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0020_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-16 07:26
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0019_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL0ce5f73923cc4eab9a66adadf874354c', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0021_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0021_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-16 07:55
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0020_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILcb3b1cfd6a174caea4a45395435e8264', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0022_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0022_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-16 08:48
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0021_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL4c38a62d96994bf09e5a1730ecfaf10e', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0023_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0023_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-18 06:23
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0022_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL8d7d194cce344b7da23466f277c68184', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
18
cope2n-api/fwd_api/migrations/0024_alter_subscriptionrequestfile_code.py
Executable file
18
cope2n-api/fwd_api/migrations/0024_alter_subscriptionrequestfile_code.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-10-27 03:22
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0023_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILbdffc84dde6b497c9c450c78b0640a0f', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 10:59
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0024_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL5b6b2a5176e749edae3be7cac245ea3e', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 11:03
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0025_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL7d56336dcec347c79da7feec7d802687', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:22
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0026_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILc2a2a162611142f9888fe60df3930fb4', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:26
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0027_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL7a6dc0368a9d42cc872dc86a115ce956', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:27
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0028_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL48b3c5102d7e4d109963edd70293524b', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:29
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0029_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILbf88633ff774438cb6c75663b578851f', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:34
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0030_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL31b8cc93916948b589117c19fa2c62f1', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:36
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0031_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa8037c1a968f4922ae5ddd5904989745', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:41
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0032_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL99554e8c9ac04e4cb710b0d3f5ca7962', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:45
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0033_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa03caec1116644b8ac3363c4ff86ae84', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:47
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0034_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL95116a6c7072422f8b85d6e627bb25b6', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:47
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0035_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL3cd55c695d634d8c8b0f9b174c5aa5c0', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:48
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0036_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL48af5750e75c44aba1c37b7db81c301d', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 12:52
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0037_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILb91182363733468fb097a90e858d8fd4', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 13:09
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0038_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILed00caacc0594739a7303d0017940d3f', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 13:10
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0039_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa4a846ce46c744bb9a20a35d98cc98c7', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-27 13:25
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0040_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL614361b87041476aa7983dded361341a', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 03:49
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0041_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILd6755b95d03c499792041b55a64d5a9f', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 08:52
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0042_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL2ff8a87566434d23b50baa82d0993483', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:24
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0043_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL457d126686c34c4bb200cb576c5fd31c', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:35
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0044_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL990106372b0b456e9d936e3bc170cfb4', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:37
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0045_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL8df31dbe1bfd402eb976a67919244f51', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:38
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0046_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL6bb95d8fb2f14757a4365058e7aab84c', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:42
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0047_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL6910cd1cff1849ee91109298cfee2fb0', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:42
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0048_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILd6b0d80a5bf94f87aeea803cf77a1d81', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:53
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0049_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL359fb138f4434fa1860f6927badb4a3c', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 09:57
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0050_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILee6ab5a3296345ca8d42bde2f523e852', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 10:02
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0051_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL622353d9d8d1492d8bd77f150e02aabf', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 10:03
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0052_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL20bddf9dd2694e56adb2f4160d9254ee', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 10:03
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0053_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILbba8d19152024d01bb26063ca26f57ef', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 10:05
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0054_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL619b04fdcd9a44ed987a72a282cc4ca3', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 10:08
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0055_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa86df077a1734c289e04b2c56afa33fe', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:21
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0056_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL996c470fedc64ad4825798642d687092', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:28
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0057_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL3eb614edc9284d7892c890ee5ebffce5', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:29
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0058_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL51bbc6937ddf4dea93a8ab57d3e04411', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:30
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0059_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILe8ad9caeca4a4f86a23673cc8d00ee65', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:33
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0060_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL63c7091d586d4acea449985045a5bba9', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:34
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0061_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL95df4ac68d194c86ba7aed53940f083a', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:35
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0062_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILf41f2b04385845258b40ba4296aebafc', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-28 12:37
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0063_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL8e126a8613ab4346acb968121ba10465', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-29 07:11
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0064_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL14de2e7b97194afa97a7825143af8aee', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-29 07:56
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0065_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FILa34ea0946b9f45ac81c9a27baeeb0dec', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
@ -0,0 +1,18 @@
|
|||||||
|
# Generated by Django 4.1.3 on 2023-11-29 07:57
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('fwd_api', '0066_alter_subscriptionrequestfile_code'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AlterField(
|
||||||
|
model_name='subscriptionrequestfile',
|
||||||
|
name='code',
|
||||||
|
field=models.CharField(default='FIL2ced0a615954429ebcaeae17911523ae', max_length=300),
|
||||||
|
),
|
||||||
|
]
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user