sbt-idp/cope2n-ai-fi/api/Kie_Invoice_AP/AnyKey_Value/utils/utils.py

815 lines
33 KiB
Python
Raw Normal View History

2023-11-30 11:22:16 +00:00
import os
import cv2
import json
import random
import glob
import re
import numpy as np
from tqdm import tqdm
from pdf2image import convert_from_path
from dicttoxml import dicttoxml
from word_preprocess import (
vat_standardizer,
ap_standardizer,
get_string_with_word2line,
split_key_value_by_colon,
normalize_kvu_output,
normalize_kvu_output_for_manulife,
manulife_standardizer
)
from utils.kvu_dictionary import (
vat_dictionary,
ap_dictionary,
manulife_dictionary
)
2024-07-05 13:14:47 +00:00
import logging
import logging.config
from utils.logging.logging import LOGGER_CONFIG
# Load the logging configuration
logging.config.dictConfig(LOGGER_CONFIG)
# Get the logger
logger = logging.getLogger(__name__)
2023-11-30 11:22:16 +00:00
def create_dir(save_dir=''):
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
# else:
2024-07-05 13:14:47 +00:00
# logger.info("DIR already existed.")
# logger.info('Save dir : {}'.format(save_dir))
2023-11-30 11:22:16 +00:00
def convert_pdf2img(pdf_dir, save_dir):
pdf_files = glob.glob(f'{pdf_dir}/*.pdf')
2024-07-05 13:14:47 +00:00
logger.info('No. pdf files:', len(pdf_files))
logger.info(pdf_files)
2023-11-30 11:22:16 +00:00
for file in tqdm(pdf_files):
pdf2img(file, save_dir, n_pages=-1, return_fname=False)
# pages = convert_from_path(file, 500)
# for i, page in enumerate(pages):
# page.save(os.path.join(save_dir, os.path.basename(file).replace('.pdf', f'_{i}.jpg')), 'JPEG')
2024-07-05 13:14:47 +00:00
logger.info('Done!!!')
2023-11-30 11:22:16 +00:00
def pdf2img(pdf_path, save_dir, n_pages=-1, return_fname=False):
file_names = []
pages = convert_from_path(pdf_path)
if n_pages != -1:
pages = pages[:n_pages]
for i, page in enumerate(pages):
_save_path = os.path.join(save_dir, os.path.basename(pdf_path).replace('.pdf', f'_{i}.jpg'))
page.save(_save_path, 'JPEG')
file_names.append(_save_path)
if return_fname:
return file_names
def xyxy2xywh(bbox):
return [
float(bbox[0]),
float(bbox[1]),
float(bbox[2]) - float(bbox[0]),
float(bbox[3]) - float(bbox[1]),
]
def write_to_json(file_path, content):
with open(file_path, mode='w', encoding='utf8') as f:
json.dump(content, f, ensure_ascii=False)
def read_json(file_path):
with open(file_path, 'r') as f:
return json.load(f)
def read_xml(file_path):
with open(file_path, 'r') as xml_file:
return xml_file.read()
def write_to_xml(file_path, content):
with open(file_path, mode="w", encoding='utf8') as f:
f.write(content)
def write_to_xml_from_dict(file_path, content):
xml = dicttoxml(content)
xml = content
xml_decode = xml.decode()
with open(file_path, mode="w") as f:
f.write(xml_decode)
def load_ocr_result(ocr_path):
with open(ocr_path, 'r') as f:
lines = f.read().splitlines()
preds = []
for line in lines:
preds.append(line.split('\t'))
return preds
def post_process_basic_ocr(lwords: list) -> list:
pp_lwords = []
for word in lwords:
pp_lwords.append(word.replace("", " "))
return pp_lwords
def read_ocr_result_from_txt(file_path: str):
'''
return list of bounding boxes, list of words
'''
with open(file_path, 'r') as f:
lines = f.read().splitlines()
boxes, words = [], []
for line in lines:
if line == "":
continue
word_info = line.split("\t")
if len(word_info) == 6:
x1, y1, x2, y2, text, _ = word_info
elif len(word_info) == 5:
x1, y1, x2, y2, text = word_info
x1, y1, x2, y2 = int(float(x1)), int(float(y1)), int(float(x2)), int(float(y2))
if text and text != " ":
words.append(text)
boxes.append((x1, y1, x2, y2))
return boxes, words
def get_colormap():
return {
'others': (0, 0, 255), # others: red
'title': (0, 255, 255), # title: yellow
'key': (255, 0, 0), # key: blue
'value': (0, 255, 0), # value: green
'header': (233, 197, 15), # header
'group': (0, 128, 128), # group
'relation': (0, 0, 255)# (128, 128, 128), # relation
}
def convert_image(image):
exif = image._getexif()
orientation = None
if exif is not None:
orientation = exif.get(0x0112)
# Convert the PIL image to OpenCV format
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Rotate the image in OpenCV if necessary
if orientation == 3:
image = cv2.rotate(image, cv2.ROTATE_180)
elif orientation == 6:
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
elif orientation == 8:
image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
else:
image = np.asarray(image)
if len(image.shape) == 2:
image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
assert len(image.shape) == 3
return image, orientation
def visualize(image, bbox, pr_class_words, pr_relations, color_map, labels=['others', 'title', 'key', 'value', 'header'], thickness=1):
image, orientation = convert_image(image)
# if orientation is not None and orientation == 6:
# width, height, _ = image.shape
# else:
# height, width, _ = image.shape
if len(pr_class_words) > 0:
id2label = {k: labels[k] for k in range(len(labels))}
for lb, groups in enumerate(pr_class_words):
if lb == 0:
continue
for group_id, group in enumerate(groups):
for i, word_id in enumerate(group):
# x0, y0, x1, y1 = int(bbox[word_id][0]*width/1000), int(bbox[word_id][1]*height/1000), int(bbox[word_id][2]*width/1000), int(bbox[word_id][3]*height/1000)
# x0, y0, x1, y1 = revert_box(bbox[word_id], width, height)
x0, y0, x1, y1 = bbox[word_id]
cv2.rectangle(image, (x0, y0), (x1, y1), color=color_map[id2label[lb]], thickness=thickness)
if i == 0:
x_center0, y_center0 = int((x0+x1)/2), int((y0+y1)/2)
else:
x_center1, y_center1 = int((x0+x1)/2), int((y0+y1)/2)
cv2.line(image, (x_center0, y_center0), (x_center1, y_center1), color=color_map['group'], thickness=thickness)
x_center0, y_center0 = x_center1, y_center1
if len(pr_relations) > 0:
for pair in pr_relations:
# xyxy0 = int(bbox[pair[0]][0]*width/1000), int(bbox[pair[0]][1]*height/1000), int(bbox[pair[0]][2]*width/1000), int(bbox[pair[0]][3]*height/1000)
# xyxy1 = int(bbox[pair[1]][0]*width/1000), int(bbox[pair[1]][1]*height/1000), int(bbox[pair[1]][2]*width/1000), int(bbox[pair[1]][3]*height/1000)
# xyxy0 = revert_box(bbox[pair[0]], width, height)
# xyxy1 = revert_box(bbox[pair[1]], width, height)
xyxy0 = bbox[pair[0]]
xyxy1 = bbox[pair[1]]
x_center0, y_center0 = int((xyxy0[0] + xyxy0[2])/2), int((xyxy0[1] + xyxy0[3])/2)
x_center1, y_center1 = int((xyxy1[0] + xyxy1[2])/2), int((xyxy1[1] + xyxy1[3])/2)
cv2.line(image, (x_center0, y_center0), (x_center1, y_center1), color=color_map['relation'], thickness=thickness)
return image
def revert_box(box, width, height):
return [
int((box[0] / 1000) * width),
int((box[1] / 1000) * height),
int((box[2] / 1000) * width),
int((box[3] / 1000) * height)
]
def get_wordgroup_bbox(lbbox: list, lword_ids: list) -> list:
points = [lbbox[i] for i in lword_ids]
x_min, y_min = min(points, key=lambda x: x[0])[0], min(points, key=lambda x: x[1])[1]
x_max, y_max = max(points, key=lambda x: x[2])[2], max(points, key=lambda x: x[3])[3]
return [x_min, y_min, x_max, y_max]
def get_pairs(json: list, rel_from: str, rel_to: str) -> dict:
outputs = {}
for pair in json:
is_rel = {rel_from: {'status': 0}, rel_to: {'status': 0}}
for element in pair:
if element['class'] in (rel_from, rel_to):
is_rel[element['class']]['status'] = 1
is_rel[element['class']]['value'] = element
if all([v['status'] == 1 for _, v in is_rel.items()]):
outputs[is_rel[rel_to]['value']['group_id']] = [is_rel[rel_from]['value']['group_id'], is_rel[rel_to]['value']['group_id']]
return outputs
def get_table_relations(json: list, header_key_pairs: dict, rel_from="key", rel_to="value") -> dict:
list_keys = list(header_key_pairs.keys())
relations = {k: [] for k in list_keys}
for pair in json:
is_rel = {rel_from: {'status': 0}, rel_to: {'status': 0}}
for element in pair:
if element['class'] == rel_from and element['group_id'] in list_keys:
is_rel[rel_from]['status'] = 1
is_rel[rel_from]['value'] = element
if element['class'] == rel_to:
is_rel[rel_to]['status'] = 1
is_rel[rel_to]['value'] = element
if all([v['status'] == 1 for _, v in is_rel.items()]):
relations[is_rel[rel_from]['value']['group_id']].append(is_rel[rel_to]['value']['group_id'])
return relations
def get_key2values_relations(key_value_pairs: dict):
triple_linkings = {}
for value_group_id, key_value_pair in key_value_pairs.items():
key_group_id = key_value_pair[0]
if key_group_id not in list(triple_linkings.keys()):
triple_linkings[key_group_id] = []
triple_linkings[key_group_id].append(value_group_id)
return triple_linkings
def merged_token_to_wordgroup(class_words: list, lwords: list, lbboxes: list, labels: list) -> dict:
word_groups = {}
id2class = {i: labels[i] for i in range(len(labels))}
for class_id, lwgroups_in_class in enumerate(class_words):
for ltokens_in_wgroup in lwgroups_in_class:
group_id = ltokens_in_wgroup[0]
ltokens_to_ltexts = [lwords[token] for token in ltokens_in_wgroup]
ltokens_to_lbboxes = [lbboxes[token] for token in ltokens_in_wgroup]
# text_string = get_string(ltokens_to_ltexts)
# text_string= get_string_by_deduplicate_bbox(ltokens_to_ltexts, ltokens_to_lbboxes)
text_string = get_string_with_word2line(ltokens_to_ltexts, ltokens_to_lbboxes)
group_bbox = get_wordgroup_bbox(lbboxes, ltokens_in_wgroup)
word_groups[group_id] = {
'group_id': group_id,
'text': text_string,
'class': id2class[class_id],
'tokens': ltokens_in_wgroup,
'bbox': group_bbox
}
return word_groups
def verify_linking_id(word_groups: dict, linking_id: int) -> int:
if linking_id not in list(word_groups):
for wg_id, _word_group in word_groups.items():
if linking_id in _word_group['tokens']:
return wg_id
return linking_id
def matched_wordgroup_relations(word_groups:dict, lrelations: list) -> list:
outputs = []
for pair in lrelations:
wg_from = verify_linking_id(word_groups, pair[0])
wg_to = verify_linking_id(word_groups, pair[1])
try:
outputs.append([word_groups[wg_from], word_groups[wg_to]])
except:
2024-07-05 13:14:47 +00:00
logger.info('Not valid pair:', wg_from, wg_to)
2023-11-30 11:22:16 +00:00
return outputs
def get_single_entity(word_groups: dict, lrelations: list) -> list:
single_entity = {'title': [], 'key': [], 'value': [], 'header': []}
list_linked_ids = []
for pair in lrelations:
list_linked_ids.extend(pair)
for word_group_id, word_group in word_groups.items():
if word_group_id not in list_linked_ids:
single_entity[word_group['class']].append(word_group)
return single_entity
def export_kvu_outputs(file_path, lwords, lbboxes, class_words, lrelations, labels=['others', 'title', 'key', 'value', 'header']):
word_groups = merged_token_to_wordgroup(class_words, lwords, lbboxes, labels)
linking_pairs = matched_wordgroup_relations(word_groups, lrelations)
header_key = get_pairs(linking_pairs, rel_from='header', rel_to='key') # => {key_group_id: [header_group_id, key_group_id]}
header_value = get_pairs(linking_pairs, rel_from='header', rel_to='value') # => {value_group_id: [header_group_id, value_group_id]}
key_value = get_pairs(linking_pairs, rel_from='key', rel_to='value') # => {value_group_id: [key_group_id, value_group_id]}
single_entity = get_single_entity(word_groups, lrelations)
# table_relations = get_table_relations(linking_pairs, header_key) # => {key_group_id: [value_group_id1, value_groupid2, ...]}
key2values_relations = get_key2values_relations(key_value) # => {key_group_id: [value_group_id1, value_groupid2, ...]}
triplet_pairs = []
single_pairs = []
table = []
2024-07-05 13:14:47 +00:00
# logger.info('key2values_relations', key2values_relations)
2023-11-30 11:22:16 +00:00
for key_group_id, list_value_group_ids in key2values_relations.items():
if len(list_value_group_ids) == 0: continue
elif (len(list_value_group_ids) == 1) and (list_value_group_ids[0] not in list(header_value.keys())) and (key_group_id not in list(header_key.keys())):
value_group_id = list_value_group_ids[0]
single_pairs.append({word_groups[key_group_id]['text']: {
'text': word_groups[value_group_id]['text'],
'id': value_group_id,
'class': "value",
'bbox': word_groups[value_group_id]['bbox'],
'key_bbox': word_groups[key_group_id]['bbox']
}})
else:
item = []
for value_group_id in list_value_group_ids:
if value_group_id not in header_value.keys():
header_group_id = -1 # temp
header_name_for_value = "non-header"
else:
header_group_id = header_value[value_group_id][0]
header_name_for_value = word_groups[header_group_id]['text']
item.append({
'text': word_groups[value_group_id]['text'],
'header': header_name_for_value,
'id': value_group_id,
"key_id": key_group_id,
"header_id": header_group_id,
'class': 'value',
'bbox': word_groups[value_group_id]['bbox'],
'key_bbox': word_groups[key_group_id]['bbox'],
'header_bbox': word_groups[header_group_id]['bbox'] if header_group_id != -1 else [0, 0, 0, 0],
})
if key_group_id not in list(header_key.keys()):
triplet_pairs.append({
word_groups[key_group_id]['text']: item
})
else:
header_group_id = header_key[key_group_id][0]
header_name_for_key = word_groups[header_group_id]['text']
item.append({
'text': word_groups[key_group_id]['text'],
'header': header_name_for_key,
'id': key_group_id,
"key_id": key_group_id,
"header_id": header_group_id,
'class': 'key',
'bbox': word_groups[value_group_id]['bbox'],
'key_bbox': word_groups[key_group_id]['bbox'],
'header_bbox': word_groups[header_group_id]['bbox'],
})
table.append({key_group_id: item})
single_entity_dict = {}
for class_name, single_items in single_entity.items():
single_entity_dict[class_name] = []
for single_item in single_items:
single_entity_dict[class_name].append({
'text': single_item['text'],
'id': single_item['group_id'],
'class': class_name,
'bbox': single_item['bbox']
})
if len(table) > 0:
table = sorted(table, key=lambda x: list(x.keys())[0])
table = [v for item in table for k, v in item.items()]
outputs = {}
outputs['title'] = single_entity_dict['title']
outputs['key'] = single_entity_dict['key']
outputs['value'] = single_entity_dict['value']
outputs['single'] = sorted(single_pairs, key=lambda x: int(float(list(x.values())[0]['id'])))
outputs['triplet'] = triplet_pairs
outputs['table'] = table
create_dir(os.path.join(os.path.dirname(file_path), 'kvu_results'))
file_path = os.path.join(os.path.dirname(file_path), 'kvu_results', os.path.basename(file_path))
write_to_json(file_path, outputs)
return outputs
def export_kvu_for_all(file_path, lwords, lbboxes, class_words, lrelations, labels=['others', 'title', 'key', 'value', 'header']) -> dict:
raw_outputs = export_kvu_outputs(
file_path, lwords, lbboxes, class_words, lrelations, labels
)
outputs = {}
# Title
outputs["title"] = (
raw_outputs["title"][0]["text"] if len(raw_outputs["title"]) > 0 else None
)
# Pairs of key-value
for pair in raw_outputs["single"]:
for key, values in pair.items():
# outputs[key] = values["text"]
elements = split_key_value_by_colon(key, values["text"])
outputs[elements[0]] = elements[1]
# Only key fields
for key in raw_outputs["key"]:
# outputs[key["text"]] = None
elements = split_key_value_by_colon(key["text"], None)
outputs[elements[0]] = elements[1]
# Triplet data
for triplet in raw_outputs["triplet"]:
for key, list_value in triplet.items():
outputs[key] = [value["text"] for value in list_value]
# Table data
table = []
header_list = {cell['header']: cell['header_bbox'] for row in raw_outputs['table'] for cell in row}
if header_list:
header_list = dict(sorted(header_list.items(), key=lambda x: int(x[1][0])))
2024-07-05 13:14:47 +00:00
logger.info("Header_list:", header_list.keys())
2023-11-30 11:22:16 +00:00
for row in raw_outputs["table"]:
item = {header: None for header in list(header_list.keys())}
for cell in row:
item[cell["header"]] = cell["text"]
table.append(item)
outputs["tables"] = [{"headers": list(header_list.keys()), "data": table}]
else:
outputs["tables"] = []
outputs = normalize_kvu_output(outputs)
# write_to_json(file_path, outputs)
return outputs
def export_kvu_for_manulife(
file_path,
lwords,
lbboxes,
class_words,
lrelations,
labels=["others", "title", "key", "value", "header"],
) -> dict:
raw_outputs = export_kvu_outputs(
file_path, lwords, lbboxes, class_words, lrelations, labels
)
outputs = {}
# Title
title_list = []
for title in raw_outputs["title"]:
is_match, title_name, score, proceessed_text = manulife_standardizer(title["text"], threshold=0.6, type_dict="title")
title_list.append({
'documment_type': title_name if is_match else None,
'content': title['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': title['id']
})
if len(title_list) > 0:
selected_element = max(title_list, key=lambda x: x['lcs_score'])
outputs["title"] = selected_element['content'].upper()
outputs["class_doc"] = selected_element['documment_type']
outputs["Loại chứng từ"] = selected_element['documment_type']
outputs["Tên chứng từ"] = selected_element['content']
else:
outputs["title"] = None
outputs["class_doc"] = None
outputs["Loại chứng từ"] = None
outputs["Tên chứng từ"] = None
# Pairs of key-value
for pair in raw_outputs["single"]:
for key, values in pair.items():
# outputs[key] = values["text"]
elements = split_key_value_by_colon(key, values["text"])
outputs[elements[0]] = elements[1]
# Only key fields
for key in raw_outputs["key"]:
# outputs[key["text"]] = None
elements = split_key_value_by_colon(key["text"], None)
outputs[elements[0]] = elements[1]
# Triplet data
for triplet in raw_outputs["triplet"]:
for key, list_value in triplet.items():
outputs[key] = [value["text"] for value in list_value]
# Table data
table = []
header_list = {cell['header']: cell['header_bbox'] for row in raw_outputs['table'] for cell in row}
if header_list:
header_list = dict(sorted(header_list.items(), key=lambda x: int(x[1][0])))
2024-07-05 13:14:47 +00:00
# logger.info("Header_list:", header_list.keys())
2023-11-30 11:22:16 +00:00
for row in raw_outputs["table"]:
item = {header: None for header in list(header_list.keys())}
for cell in row:
item[cell["header"]] = cell["text"]
table.append(item)
outputs["tables"] = [{"headers": list(header_list.keys()), "data": table}]
else:
outputs["tables"] = []
outputs = normalize_kvu_output_for_manulife(outputs)
# write_to_json(file_path, outputs)
return outputs
# For FI-VAT project
def get_vat_table_information(outputs):
table = []
for single_item in outputs['table']:
headers = [item['header'] for sublist in outputs['table'] for item in sublist if 'header' in item]
item = {k: [] for k in headers}
2024-07-05 13:14:47 +00:00
logger.info(item)
2023-11-30 11:22:16 +00:00
for cell in single_item:
# header_name, score, proceessed_text = vat_standardizer(cell['header'], threshold=0.75, header=True)
# if header_name in list(item.keys()):
# item[header_name] = value['text']
item[cell['header']].append({
'content': cell['text'],
'processed_key_name': cell['header'],
'lcs_score': random.uniform(0.75, 1.0),
'token_id': cell['id']
})
# for header_name, value in item.items():
# if len(value) == 0:
# if header_name in ("Số lượng", "Doanh số mua chưa có thuế"):
# item[header_name] = '0'
# else:
# item[header_name] = None
# continue
# item[header_name] = max(value, key=lambda x: x['lcs_score'])['content'] # Get max lsc score
# item = post_process_for_item(item)
# if item["Mặt hàng"] == None:
# continue
table.append(item)
2024-07-05 13:14:47 +00:00
logger.info(table)
2023-11-30 11:22:16 +00:00
return table
def get_vat_information(outputs):
# VAT Information
single_pairs = {k: [] for k in list(vat_dictionary(header=False).keys())}
for pair in outputs['single']:
for raw_key_name, value in pair.items():
key_name, score, proceessed_text = vat_standardizer(raw_key_name, threshold=0.8, header=False)
2024-07-05 13:14:47 +00:00
# logger.info(f"{raw_key_name} ==> {proceessed_text} ==> {key_name} : {score} - {value['text']}")
2023-11-30 11:22:16 +00:00
if key_name in list(single_pairs.keys()):
single_pairs[key_name].append({
'content': value['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': value['id'],
})
for triplet in outputs['triplet']:
for key, value_list in triplet.items():
if len(value_list) == 1:
key_name, score, proceessed_text = vat_standardizer(key, threshold=0.8, header=False)
2024-07-05 13:14:47 +00:00
# logger.info(f"{raw_key_name} ==> {proceessed_text} ==> {key_name} : {score} - {value['text']}")
2023-11-30 11:22:16 +00:00
if key_name in list(single_pairs.keys()):
single_pairs[key_name].append({
'content': value_list[0]['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': value_list[0]['id']
})
for pair in value_list:
key_name, score, proceessed_text = vat_standardizer(pair['header'], threshold=0.8, header=False)
2024-07-05 13:14:47 +00:00
# logger.info(f"{raw_key_name} ==> {proceessed_text} ==> {key_name} : {score} - {value['text']}")
2023-11-30 11:22:16 +00:00
if key_name in list(single_pairs.keys()):
single_pairs[key_name].append({
'content': pair['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': pair['id']
})
for table_row in outputs['table']:
for pair in table_row:
key_name, score, proceessed_text = vat_standardizer(pair['header'], threshold=0.8, header=False)
2024-07-05 13:14:47 +00:00
# logger.info(f"{raw_key_name} ==> {proceessed_text} ==> {key_name} : {score} - {value['text']}")
2023-11-30 11:22:16 +00:00
if key_name in list(single_pairs.keys()):
single_pairs[key_name].append({
'content': pair['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': pair['id']
})
return single_pairs
def post_process_vat_information(single_pairs):
vat_outputs = {k: None for k in list(single_pairs)}
for key_name, list_potential_value in single_pairs.items():
if key_name in ("Ngày, tháng, năm lập hóa đơn"):
if len(list_potential_value) == 1:
vat_outputs[key_name] = list_potential_value[0]['content']
else:
date_time = {'day': 'dd', 'month': 'mm', 'year': 'yyyy'}
for value in list_potential_value:
date_time[value['processed_key_name']] = re.sub("[^0-9]", "", value['content'])
vat_outputs[key_name] = f"{date_time['day']}/{date_time['month']}/{date_time['year']}"
else:
if len(list_potential_value) == 0: continue
if key_name in ("Mã số thuế người bán"):
selected_value = min(list_potential_value, key=lambda x: x['token_id']) # Get first tax code
# tax_code_raw = selected_value['content'].replace(' ', '')
tax_code_raw = selected_value['content']
if len(tax_code_raw.replace(' ', '')) not in (10, 13): # to remove the first number dupicated
tax_code_raw = tax_code_raw.split(' ')
tax_code_raw = sorted(tax_code_raw, key=lambda x: len(x), reverse=True)[0]
vat_outputs[key_name] = tax_code_raw.replace(' ', '')
else:
selected_value = max(list_potential_value, key=lambda x: x['lcs_score']) # Get max lsc score
vat_outputs[key_name] = selected_value['content']
return vat_outputs
def export_kvu_for_VAT_invoice(file_path, lwords, class_words, lrelations, labels=['others', 'title', 'key', 'value', 'header']):
vat_outputs = {}
outputs = export_kvu_outputs(file_path, lwords, class_words, lrelations, labels)
# List of items in table
table = get_vat_table_information(outputs)
# table = outputs["table"]
for pair in outputs['single']:
for raw_key_name, value in pair.items():
vat_outputs[raw_key_name] = value['text']
# VAT Information
# single_pairs = get_vat_information(outputs)
# vat_outputs = post_process_vat_information(single_pairs)
# Combine VAT information and table
vat_outputs['table'] = table
write_to_json(file_path, vat_outputs)
2024-07-05 13:14:47 +00:00
logger.info(vat_outputs)
2023-11-30 11:22:16 +00:00
return vat_outputs
# For SBT project
def get_ap_table_information(outputs):
table = []
for single_item in outputs['table']:
item = {k: [] for k in list(ap_dictionary(header=True).keys())}
for cell in single_item:
header_name, score, proceessed_text = ap_standardizer(cell['header'], threshold=0.8, header=True)
2024-07-05 13:14:47 +00:00
# logger.info(f"{key} ==> {proceessed_text} ==> {header_name} : {score} - {value['text']}")
2023-11-30 11:22:16 +00:00
if header_name in list(item.keys()):
item[header_name].append({
'content': cell['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': cell['id']
})
for header_name, value in item.items():
if len(value) == 0:
item[header_name] = None
continue
item[header_name] = max(value, key=lambda x: x['lcs_score'])['content'] # Get max lsc score
table.append(item)
return table
def get_ap_triplet_information(outputs):
triplet_pairs = []
for single_item in outputs['triplet']:
item = {k: [] for k in list(ap_dictionary(header=True).keys())}
is_item_valid = 0
for key_name, list_value in single_item.items():
for value in list_value:
if value['header'] == "non-header":
continue
header_name, score, proceessed_text = ap_standardizer(value['header'], threshold=0.8, header=True)
if header_name in list(item.keys()):
is_item_valid = 1
item[header_name].append({
'content': value['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': value['id']
})
if is_item_valid == 1:
for header_name, value in item.items():
if len(value) == 0:
item[header_name] = None
continue
item[header_name] = max(value, key=lambda x: x['lcs_score'])['content'] # Get max lsc score
item['productname'] = key_name
# triplet_pairs.append({key_name: new_item})
triplet_pairs.append(item)
return triplet_pairs
def get_ap_information(outputs):
single_pairs = {k: [] for k in list(ap_dictionary(header=False).keys())}
for pair in outputs['single']:
for raw_key_name, value in pair.items():
key_name, score, proceessed_text = ap_standardizer(raw_key_name, threshold=0.8, header=False)
2024-07-05 13:14:47 +00:00
# logger.info(f"{raw_key_name} ==> {proceessed_text} ==> {key_name} : {score} - {value['text']}")
2023-11-30 11:22:16 +00:00
if key_name in list(single_pairs):
single_pairs[key_name].append({
'content': value['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': value['id']
})
## Get single_pair if it in a table (Product Information)
is_product_info = False
for table_row in outputs['table']:
pair = {"key": None, 'value': None}
for cell in table_row:
_, _, proceessed_text = ap_standardizer(cell['header'], threshold=0.8, header=False)
if any(txt in proceessed_text for txt in ['product', 'information', 'productinformation']):
is_product_info = True
if cell['class'] in pair:
pair[cell['class']] = cell
if all(v is not None for k, v in pair.items()) and is_product_info == True:
key_name, score, proceessed_text = ap_standardizer(pair['key']['text'], threshold=0.8, header=False)
2024-07-05 13:14:47 +00:00
# logger.info(f"{pair['key']['text']} ==> {proceessed_text} ==> {key_name} : {score} - {pair['value']['text']}")
2023-11-30 11:22:16 +00:00
if key_name in list(single_pairs):
single_pairs[key_name].append({
'content': pair['value']['text'],
'processed_key_name': proceessed_text,
'lcs_score': score,
'token_id': pair['value']['id']
})
## end_block
ap_outputs = {k: None for k in list(single_pairs)}
for key_name, list_potential_value in single_pairs.items():
if len(list_potential_value) == 0: continue
if key_name == "imei_number":
2024-07-05 13:14:47 +00:00
# logger.info('list_potential_value', list_potential_value)
2023-11-30 11:22:16 +00:00
# ap_outputs[key_name] = [v['content'] for v in list_potential_value if v['content'].replace(' ', '').isdigit() and len(v['content'].replace(' ', '')) > 5]
ap_outputs[key_name] = []
for v in list_potential_value:
imei = v['content'].replace(' ', '')
if imei.isdigit() and len(imei) > 5: # imei is number and have more 5 digits
ap_outputs[key_name].append(imei)
else:
selected_value = max(list_potential_value, key=lambda x: x['lcs_score']) # Get max lsc score
ap_outputs[key_name] = selected_value['content']
return ap_outputs
def export_kvu_for_SDSAP(file_path, lwords, class_words, lrelations, labels=['others', 'title', 'key', 'value', 'header']):
outputs = export_kvu_outputs(file_path, lwords, class_words, lrelations, labels)
# List of items in table
table = get_ap_table_information(outputs)
triplet_pairs = get_ap_triplet_information(outputs)
table = table + triplet_pairs
ap_outputs = get_ap_information(outputs)
ap_outputs['table'] = table
# ap_outputs['triplet'] = triplet_pairs
write_to_json(file_path, ap_outputs)
return ap_outputs