sbt-idp/scripts/crawl_database_by_time.py

98 lines
2.8 KiB
Python
Raw Normal View History

2024-01-05 07:18:16 +00:00
import csv
import psycopg2
import boto3
import os
from tqdm import tqdm
from datetime import datetime, timedelta
2024-03-05 03:22:15 +00:00
import pytz
from django.utils import timezone
2024-01-05 07:18:16 +00:00
from dotenv import load_dotenv
load_dotenv("../.env_prod")
2024-03-05 03:22:15 +00:00
tz = pytz.timezone('Asia/Singapore')
OUTPUT_NAME = "Feb29"
START_DATE = datetime(2024, 2, 29)
END_DATE = datetime(2024, 3, 1)
START_DATE = timezone.make_aware(START_DATE, tz)
END_DATE = timezone.make_aware(END_DATE, tz)
2024-01-05 07:18:16 +00:00
# Database connection details
db_host = os.environ.get('DB_HOST', "")
db_name = os.environ.get('DB_SCHEMA', "")
db_user = os.environ.get('DB_USER', "")
db_password = os.environ.get('DB_PASSWORD', "")
# S3 bucket details
s3_bucket_name = os.environ.get('S3_BUCKET_NAME', "")
s3_folder_prefix = 'sbt_invoice'
# S3 access credentials
access_key = os.environ.get('S3_ACCESS_KEY', "")
secret_key = os.environ.get('S3_SECRET_KEY', "")
# Request IDs for filtering
# Connect to the PostgreSQL database
conn = psycopg2.connect(
host=db_host,
database=db_name,
user=db_user,
password=db_password
)
# Create a cursor
cursor = conn.cursor()
# Execute the SELECT query with the filter
query = "SELECT * FROM fwd_api_subscriptionrequest WHERE created_at >= %s AND created_at <= %s"
cursor.execute(query, (START_DATE, END_DATE))
# Fetch the filtered data
data = cursor.fetchall()
# Define the CSV file path
csv_file_path = f'{OUTPUT_NAME}.csv'
# Write the data to the CSV file
with open(csv_file_path, 'w', newline='') as csv_file:
writer = csv.writer(csv_file)
writer.writerow([desc[0] for desc in cursor.description]) # Write column headers
writer.writerows(data) # Write the filtered data rows
# Close the cursor and database connection
cursor.close()
conn.close()
2024-01-31 03:00:18 +00:00
# # Download folders from S3
2024-02-28 11:45:10 +00:00
s3_client = boto3.client(
's3',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
request_ids = []
for rq in data:
rq_id = rq[3]
request_ids.append(rq_id)
for request_id in tqdm(request_ids):
folder_key = f"{s3_folder_prefix}/{request_id}/" # Assuming folder structure like: s3_bucket_name/s3_folder_prefix/request_id/
local_folder_path = f"{OUTPUT_NAME}/{request_id}/" # Path to the local folder to save the downloaded files
os.makedirs(OUTPUT_NAME, exist_ok=True)
os.makedirs(local_folder_path, exist_ok=True)
2024-01-05 07:18:16 +00:00
2024-02-28 11:45:10 +00:00
# List objects in the S3 folder
response = s3_client.list_objects_v2(Bucket=s3_bucket_name, Prefix=folder_key)
objects = response.get('Contents', [])
2024-01-05 07:18:16 +00:00
2024-02-28 11:45:10 +00:00
for s3_object in objects:
object_key = s3_object['Key']
local_file_path = local_folder_path + object_key.split('/')[-1] # Extracting the file name from the object key
2024-01-05 07:18:16 +00:00
2024-02-28 11:45:10 +00:00
# Download the S3 object to the local file
s3_client.download_file(s3_bucket_name, object_key, local_file_path)